Economics 203C Introduction to Econometrics–System Models Spring, 2006 Moshe Buchinsky Department of Economics UCLA

Problem Set 1 Due: Monday April 17, 2006

Question 1:

Consider the simple consumption model given by

$$c_i = \beta_1 + \beta_2 y_i^* + u_i, \quad u_i \sim \text{i.i.d.} \ (0, \sigma^2),$$

where c_i is the logarithm of consumption by household *i*, and y_i^* is the permanent income of that household, which is not observed. Instead, we only observe the current household income y_i

$$y_i = y_i^* + v_i,$$

where $v_i \sim i.i.d. (0, \omega^2)$, is assume to uncorrelated with y_i^* and u_i . Consider now the regression

$$c_i = \beta_1 + \beta_2 y_i + \varepsilon_i.$$

Under some assumption it is reasonable to believe that the true parameter β_{20} is positive.

- **a.** Show that y_i is negatively correlated with ε_i .
- **b.** Using the result in (a), compute probability limit of the OLS estimator for β_{20} , say β_2 , from the second regression. show that this probability limit is less than β_{20} .

Question 2:

Suppose that the data generating process that simultaneously determine x and y is given by

$$y = x\beta_0 + \sigma_u u,$$

$$x = w\pi_0 + \sigma_v v,$$

where y, x, u and v are all $n \times 1$ vectors, u and v have standard normal distribution and $E(u_i v_i) = \rho$. Suppose also that there exist an instrument for x, say w. Assume that w'w = 1.

a. Show that $E(u_i|v_i) = \rho v_i$, so we can write $u_i = \rho v_i + \varepsilon_i$, where $E(\varepsilon_i|v_i) = 0$.

- **b.** Define the instrumental variable for β_0 , say $\hat{\beta}_{IV}$.
- **c.** Show that for the estimator defined in (b)

$$\widehat{\beta}_{IV} - \beta_0 = \frac{\sigma_u w'(\rho v + \varepsilon)}{\pi_0 + \sigma_v w' v},$$

where $\varepsilon = (\varepsilon_1, ..., \varepsilon_n)'$.

d. Show that if $\sigma_v = 0$, then the estimator defined in (b) is an unbiased estimator for β_0 . Interpret this result.

Question 3:

Consider the regression model given by

$$y_i = x'_i \beta_0 + u_i, \quad i = 1, ..., n,$$

where x_i is a $k \times 1$ vector of regressors and β_0 is a $k \times 1$ vector of unknown parameters. Assume that $u_i \sim \text{i.i.d.}(0, \sigma_u^2)$, but $E(x_i u_i) \neq 0$. Let z_i be an $l \times 1$ vector, with l > k.

- **a.** What would constitute z_i as an instrument for x_i ? Discuss briefly.
- **b.** Suppose we define

$$\hat{\beta}_{IV} = (X'ZA^{-1}Z'X)^{-1}X'ZA^{-1}Z'y$$

where X is a $n \times k$ matrix with rows given by x'_i , y is an $n \times 1$ vector of the stacked y_i , Z is an $n \times l$ matrix with rows given by z'_i , and A is an $n \times n$ non-stochastic, non-singular, matrix. Show that $\hat{\beta}_{IV}$ is a consistent estimator for β_0 .

c. Show that, under some regularity conditions,

$$\sqrt{n}\left(\hat{\beta}_{IV}-\beta_0\right) \xrightarrow{D} N(0,\Lambda),$$

and provide Λ .