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Part 1 (Jesus Fernandez-Villaverde)

Introduction

This set of lectures discusses methods of estimating structural economic models with applications
to macroeconomic data. Let's start with a roadmap. In order to estimate a structural economic
model given some data a researcher should take four general steps. First the model should be
clearly speci�ed including assumptions about the distributions of all the exogenous shocks hitting
the economy. Usually a macroeconomic model consists of the choice functions of the agents which
are optimized given some constraints, the aggregate resource constraints on the economy, as well as
assumptions about expectation formation and stochastic processes driving the shocks.
The second step includes �nding the solution of the model, which amounts to describing the

state vector and writing policy functions for all the endogenous variables. This solution can usually
be expressed in terms of a state-space representation, which consists of a transition equation and a
measurement equation. The transition equation describes the evolution of the state vector subject
to random shocks, while the measurement equation determines how the observed data is connected
to the state vector.
After the model is speci�ed and solved, and a state-space representation is obtained, �ltering

theory provides tools to compute the likelihood function of the data given a parameter vector. If
the model is linear and the shocks are gaussian, then the Kalman �lter provides an exact analytical
solution for the likelihood and the evolution of the state vector can be recovered using standard
techniques. If the model is nonlinear and/or non gaussian then more complicated numerical proce-
dures such as sequential Monte-Carlo methods and the particle �lter are required to compute the
likelihood.
The fourth step is to compute the likelihood function of the observations for di�erent values of the

parameter vector and use it as a measure of goodness of �t in order to �nd some optimal parameter
values or optimal distribution of parameter values. Finding the mode of the likelihood is a consistent
way of getting a classical point estimate of the parameters, while a Bayesian econometician would
obtain a posterior distribution of parameters using some economically sound prior combined with
the likelihood function.

Solving DSGE Models

Let's look at an example - a standard real business cycle model:

maxct;lt;kt+1 E

1X
t=0

�t (ln ct +  ln (1� lt))

s.t. ct + kt+1 = k�t (e
ztlt)

1�� + (1� �) kt
zt = �zt�1 + "t; "t � N (0; �)
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There are several ways to solve this model. In the special case � = 1 the model has an analytical
solution. If that's not the case only a numerical solution can be obtained. One way to �nd a global
numerical solution is via value function iteration. This method is good for simple models, but it's
very slow once the models become more complicated.
A faster way to obtain the global solution would be to approximate the policy function using

some set of basis functions: f (s) =

nX
i=1

�i i (s) :

The basis functions  i () people often use are Chebyshev polynomials or some local functions
(functions with a compact support). The latter method is called the �nite elements method. Both
value function iteration methods and projection methods su�er from the curse of dimensionality,
since the time needed to �nd the solution and the memory requirements increase exponentially with
the number of states.
The only way to avoid the curse of dimensionality is to sacri�ce the global properties of the

solution and instead to take a local approximation of the solution around some point of interest.
Most economic models have at least one equilibrium and if the shocks are not very big, taking a
local approximation of the model in the vicinity of the equilibrium point is usually not a very bad
idea.
Perturbation methods use a local approximation of the policy functions around the steady state

of the model, which makes the model much easier to solve. The disadvantage of this approach is
that it's not appliccable to bigger deviations from the steady state as well as to the cases of multiple
steady states.
Let's use the RBC model above to illustrate the application of perturbation methods. First the

equilibrium (�rst order) conditions are written down.
FOCct :

1
ct
= �t

FOClt :
 
1�lt = �tk

�
t (e

ztlt)
1�� 1��

lt

FOCkt+1 : �t = Et��t+1

�
�

kt+1
k�t+1 (e

zt+1lt+1)
1�� + 1� �

�
Simplifying the system we get the intertemporal Euler equation:

1
ct
= �Et

�
1

ct+1

�
�
�
ezt+1 lt+1

kt+1

�1��
+ 1� �

��
and the consumption-leisure trade-o�:

 ct
1�lt = (1� �)

�
kt
lt

��
(ezt)1��

Adding the resource constraint and the stochastic process for technology we get a system of four
equations:

1
ct
= �Et

�
1

ct+1

�
�
�
ezt+1 lt+1

kt+1

�1��
+ 1� �

��
(1)

 ct
1�lt = (1� �)

�
kt
lt

��
(ezt)1�� (2)

ct + kt+1 = k�t (e
ztlt)

1�� + (1� �) kt (3)
zt = �zt�1 + "t; "t � N (0; �) (4)
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The second step is to �nd a deterministic steady state, which is achieved by setting variances
of all random variables to zero: � = 0: Here � is called the perturbation parameter, because we
linearize the model in the vicinity of � = 0. Then the equations for the steady-state can be rewritten
as:

z = �z = 0 1
c
= � 1

c

�
�
�
l
k

�1��
+ 1� �

�
 c
1�l = (1� �)

�
k
l

��
c = k�l1�� � �k

These imply the steady-state values of the form:�
1
�
�1+�
�

� 1
1��

= l
k
= ' c

1�l =
1��
 
'�� = �

c =

�
1
�
�1+�
�

� �

�
k = ('1�� � �) k = 
k

Hence, c = � (1� l) = 

'
l and

k = �

+'�

; c = 
k; l = 'k; y = k�l1��:

One can do linearization or loglinearization around the steady-state. Log-linearization means
that we take log-deviations from the steady-state of the form: xt = xsse

x̂t : If we now replace all the
variables in the Euler equations using this formula for deviations from the steady state, it follows,
that (omitting the hats):

1
cect

= �Et

�
1

cect+1

�
�
�
ezt+1 le

lt+1

kekt+1

�1��
+ 1� �

��
 cect

1�lelt = (1� �)
�
kekt

lelt

��
(ezt)1��

cect + kekt+1 = e�ktk�
�
eztlelt

�1��
+ (1� �) kekt

This can be simpli�ed and after taking logs is equivalent to:

Et (ct+1 � ct) = (1� �) (1� � (1 + �))Et (zt+1 + lt+1 � kt+1)
ct � (1� �) zt � � (kt � lt) +

'�


lt = 0




+�

ct +
1


+�
kt+1 � 1��


+�
kt = �kt + zt + (1� �) lt

After some algebra one can express the model in the following way:

Akt+1 +Bkt + Clt +Dzt = 0
Et+1 (Gkt+1 +Hkt + Jlt+1 +Klt + Lzt+1 +Mzt) = 0

Ezt+1 = �zt = Nzt

Perturbation methods are based on the method of undetermined coe�cients. We guess the
policy functions of the form:

kt+1 = Pkt +Qzt;
lt = Rkt + Szt;
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and plug it into the equations of the model. Since these policy rules need to hold for any kt and
zt; all the coe�cients in the resulting equations have to be zero.

A (Pkt +Qzt) +Bkt + C (Rkt + Szt) +Dzt = 0
G (Pkt +Qzt) +Hkt + J (R (Pkt +Qzt) + SNzt) +K (Rkt + Szt) + LNzt +Mzt = 0

This implies:

AP +B + CR = 0 AQ+ CS +D = 0
GP +H + JRP +KR = 0 GQ+ JRQ+ JSN +KS + LN +M = 0

This system of four equations in four unknowns (P,Q,R,S) simpli�es to a quadratic equation.
Usually it has two solutions, one with an eigenvalue smaller than one corresponding to a stable
path converging back to the steady state, and another explosive solution diverging from the steady
state, which violates the transversality condition.
The stable solution is equivalent to a system of the form:24 kt+1

zt+1
lt

35 =
24 P Q 0
0 N 0
R S 0

3524 kt
zt
lt

35+
24 0
"t+1
0

35
This is a linear (�rst-order) approximation of the model. When the changes around the steady

state are relatively big, or when one attempts to measure welfare implications of di�erent policies,
the �rst-order approximation is not enough. However, in most cases the second order is enough for all
interesting questions. Though it might seem, that taking the second order is much more complicated,
and will lead to higher order equations, in fact to compute all the higher order approximations
beyond the �rst one the researcher only needs to recursively solve linear systems of equations.

Computing the Likelihood

In the previous section it was demonstrated how one can solve a simple real business cycle model
using perturbation methods. The result of that process was a �rst or second order Markov structure,
which can be more generally expressed in the following form:

St = f (St�1;Wt; 
) ;

where St is the state vector, Wt is the vector of shocks hitting the economy, and 
 is the vector
of all the structural parameters (e.g. describing preferences, technology and beliefs).
This equation is called the transition equation because it describes how the system goes from

one state to another being hit by some exogenous shock. This equation expresses the researcher's
assumptions of how the economy moves over time. To compare it to the data one needs to know how
the state of the economy a�ects some variables, that are directly observable. The corresponding
equation is called the measurement equation:

Yt = g (St; Vt; 
) ;
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where Yt stands for the observed variables, Vt is the measurement error. One can interpret
measurement errors as either shocks that hit observables but not the states, or sometimes they can
be shocks with clear economic intuition. The more freedom is given to these shocks the better the
�t of the model is, but the less useful the estimates of parameters are.
Once the model is expressed in this state-space representation, which includes the transition

equation and the measurement equation, standard methods coming from the �ltering theory are
used to make inference about the states of the economy given the observations. The state-space
representation is very 
exible, and almost any system can be expressed in this form by either a
clever transformation of variables, or by adding lags of the variables as separate states, used to
track the history. In the case of the RBC model, when the economist can observe output and labor
input, the measurement equation takes the following form:

�
yt
lt

�
=

�
� � 1� �
0 0 1

�24 kt
zt
lt�1

35+ � v1t
v2t

�

Filtering theory provides the researcher with tools to do �ltering (recovering the state of the
economy today given all the information up to date), smoothing (recovering the states of the econ-
omy in previous periods, given all the information up to date) and forecasting (making projections
into the future).
All of the techniques are in fact based on two fundamental results. The �rst one is the Chapman-

Kolmogorov theorem, that is used for predicting the state one step into the future:

p (Stjyt�1; 
) =
R
p (StjSt�1; 
) p (St�1jyt�1; 
) dSt�1:

The second result is used for updating the conditional distribution of the state vector, given a
new observation. It is the Bayes theorem:

p (Stjyt; 
) =
p(ytjSt;
)p(Stjyt�1;
)R
p(ytjSt;
)p(Stjyt�1;
)dSt :

Using the state-space representations we can invert the transition equation St = f (St�1;Wt; 
)
to obtain the conditional distribution p (StjSt�1; 
) ; while by using the measurement equation Yt =
g (St; Vt; 
) we can sample from p (ytjSt; 
) :
Therefore, the likelihood can be factorized and computed recursively as:

p
�
yT ; 


�
=

TY
i=1

p (ytjyt�1; 
) =
R
p (y1jS0; 
) dS0

TY
i=2

R
p (ytjSt; 
) p (Stjyt�1; 
) dSt

This can be done by:

1. drawing from the distribution of the initial state,

2. computing the probability of the �rst observation conditional on the initial state

3. sampling from the measurement equation given the initial state and the parameter vector,

4. transiting to a new state using the transition equation and the Chapman-Kolmogorov theorem
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5. updating the probabilities of the state given a new observation using the Bayes theorem

6. weighting the results with relative probabilities to obtain the likelihood of the next observation
given the new state,

7. going to step 3 and applying steps 3-7 recursively untill the sample ends.

This process computes the likelihood of the observations given the initial state and the param-
eters of the model, and at the end gives the distribution of the �nal state ST conditional on all the
data available. States in previous periods were all computed conditional on the data up to that
period of time, while it may be interesting to condition on all the available information. This is
called smoothing. To �nd the whole sequence of states conditional on all the information available
to the researcher, backward recursion is applied:

p
�
StjyT ; 


�
= p (Stjyt; 
)

R
p
�
St+1jyT ; 


�
p (St+1jSt; 
) dSt+1:

This allows to correct beliefs about the states, using later observations.
The described general strategy looks simple, but for the fact that it's impossible to compute the

above integrals analytically except certain particular cases. One of such cases is when the system is
linear (e.g. �rst order approximation) and the shocks are gaussian. In this case all the conditional
distributions in all future periods are also gaussian, and one needs to keep track only of the �rst
two moments of each distribution. The case of a linear model with gaussian shocks is called the
Kalman �lter.

Kalman Filter

The linear system can be expressed as:

st = Fst�1 +Gwt; wt � N (0; Q)
yt = H 0st + vt; vt � N (0; R)

The goal is to �nd the best linear predictors of the following variables:

stjt�1 = E (stjyt�1) ytjt�1 = E (ytjyt�1) stjt = E (stjyt)
�tjt�1 = E

��
st � stjt�1

�2 jyt�1� 
tjt�1 = E
��
yt � ytjt�1

�2 jyt�1� �tjt = E
��
st � stjt

�2 jyt�
In this case the Chapman-Kolmogorov updating rule is equivalent to:

st+1jt = Fstjt yt+1jt = H 0st+1jt
�t+1jt = F�tjtF

0 +GQG0 
tjt�1 = H 0�tjt�1H +R

The Bayes theorem leads to a linear updating rule:

stjt = stjt�1 +Kt

�
yt � ytjt�1

�
�tjt = �tjt�1 �KtH

0�tjt�1
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with Kalman gain equal to Kt = �tjt�1H

�1
tjt�1:

Applying these seven equations recursively follows the general procedure closely and gives the
best linear predictors of the mean and variance of the state of the system given all the observations
at time T.
The likelihood of the Kalman �lter has a closed form, based on the normal distribution:

ln p
�
yT jF;G;H;Q;R

�
= � ln p (ytjyt�1; 
) = ��Tt=1

�
N
2
ln 2� + 1

2
ln
��
tjt�1��+ 1

2
�ts=1v

0
s
sjs�1vs

�
;

where vt = yt � ytjt�1:
It is important to mention that both the choice of the measurement equation and of the ini-

tial conditions a�ects the results. The introduction of measurement errors is necessary to avoid
stochastic singularity, but in most real world applications it shouldn't account for more then 10-15
percent of the variation in the data. To avoid problems with initial conditions it's useful to either
make them part of the parameter vector, or use the steady-state values of the states as initial ones.

Particle Filter

Sometimes a linear gaussian modelling framework cannot address the questions of interest:
1) The shocks are big relative to the steady state values, hence linearization does not do a good

job
2) Both the analysis of the risk-premium and welfare implications of policies rely on the curvature

of preferences, which requires a second-order approximation of the model
3) Fat tails or skewness of the distribution of shocks may have important economic implications
4) Markov-switching models require computing Lebegue integrals, which the Kalman �lter (using

Rieman integrals) cannot do.
In this case a more general version of the algorithm above needs to be implemented. It is called

the particle �lter. The particle �lter is based on the idea of sequential Monte-Carlo Importance
Sampling. A brief description includes the following steps:

1. drawing from the distribution of the initial state,

2. computing the probabilities of the �rst observation conditional on the initial state

3. drawing from the distribution of shocks to transit to a new state

4. computing the probability of the next observation conditional on each of the states

5. weighting the conditional probabilities in step 4 by their sum

6. resampling the states from step 3 with weights from step 5 to get the new draw of states

7. summing up all the conditional probabilities in step 4 to obtain the likelihood

8. using the result of step 6 to go to step 3 and transit to the next period

9. repeating steps 3-8 recursively untill the end of the sample.

It is important to mention that the particle �lter avoids direct computations of integrals. Instead,
it uses the importance sampling approach to resample draws from the conditional distribution of
states every period and then uses the law of large numbers to compute the likelihood. It has
nice assymptotic properties and avoids the problem of sample depletion. However, it is still very
computationally demanding.
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Part 2 (Juan Rubio-Ramirez)

Introduction

As discussed in part 1 of these lecture notes, in order to estimate a structural economic model
given some data a researcher should take four general steps. First the model should be clearly
speci�ed in terms of choice functions of the agents which they optimize given some constraints, the
resource constraints of the economy, the assumptions about expectation formation and stochastic
processes driving the shocks. Then the model should be solved in terms of policy functions for all
the endogenous variables, which allows to write the model in terms of a transition equation and a
measurement equation. After the model is speci�ed and solved, and a state-space representation is
obtained, �ltering theory is used to compute the likelihood function of the data given a parameter
vector. This could be done using a Kalman �lter if the model is linear and gaussian, or using the
particle �lter in more comlicated cases.
The fourth step is to use the likelihood of the observations given a vector of parameters to

�nd an optimal parameter value or an optimal distribution of the parameter value. A classical
econometrician would �nd the maximum likelihood estimate, while a Bayesian econometician would
obtain a posterior distribution of parameters using some economically sound prior. This part of the
lecture notes gives a brief overview of computational techniques used by Bayesian econometricians
to �nd the posterior distribution of the parameters. An example of the standard RBC model is
then taken to the data using both classical and Bayesian techniques.

Classical vs Bayesian

In part 1 of the lecture notes we saw how to obtain the likelihood function of the data given speci�c
values of parameters L

�
Y T j�

�
. That means that for every value of the parameter vector � we

can come up with a number, characterizing the relative (unnormalized) likelihood of the data. A
classical econometrician would then use some robust maximizing algorithm to �nd the parameter
combination which achieves the maximum value of the likelihood, therefore �nding the mode of the
distribution:

�̂ML = argmax� L
�
Y T j�

�
:

This method leads to a consistent, information-e�cient and asymptotically normal estimate of
the structural parameters of interest. However, maximization is in general a very di�cult task.
A Bayesian econometrician would combine the likelihood of the data with prior knowledge about

the parameters of interest to obtain the posterior distribution and the marginal data density:

�
�
�jY T

�
=

L(Y T j�)�0(�)R
L(Y T j�)�0(�)d�

P
�
Y T
�
=
R
L
�
Y T j�

�
�0 (�) d�

In reality the sample is always �nite, so assymptotic properties are not very useful. One implica-
tion of the �nite sample is that classical estimation assumes the possibility of taking the number of
observations to in�nity, thus violating the likelihood principle by taking into account the potential
outcomes that were never observed. The likelihood principle states that all the information comes
from the data, and hence is contained in the likelihood of the data given parameter values. When
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�nding con�dence intervals of parameters a classical econometrician would be projecting the model
into the in�nite future, thus using observations that never occured.
The di�erence in the way the two econometricians think about the data is as follows. A classical

person assumes that the experiment could be reproduced an in�nite number of times and the data
is one of the many possible outcomes. A Bayesian experimenter assumes that the data is given, i.e.
the experiment has been performed and cannot be reproduced. Therefore, the Bayesian estimates
based on the likelihood principle would be consistent ex post, i.e. when experiment has already
taken place, while classical estimates would be consistent ex ante, as if the experiment has not taken
place yet.
The advantages of classical estimation have already been stated. However it violates the like-

lihood principle and does not apply to small samples. The Bayesian approach does well both in
small samples and asymptotically. Another advantage is that it's convenient to deal with mis-
speci�ed models. The main disadvantage and the reason it hadn't been used untill recently is its
computational intensity.

Metropolis-Hastings

This section discusses the main ideas used to obtain parameters of the posterior distribution. Let's
abstract from the likelihood for a moment and assume that we found a way to draw from the pos-
terior distribution. Then computing any moment of the posterior distribution would be a relatively
simple task if we use the law of large numbers:

E�(�jY T )h (�) =
R
h (�)�

�
�jY T

�
d� ' 1

n
�ni=1h (�i)

Therefore learning about the posterior distribution is equivalent to being able to draw from it,
i.e. being able to generate (pseudo) random numbers, which would be distributed as the posterior.
To be able to draw from a particular distribution that's hard to characterize analytically, Markov
Chains are typically used. Let �S be the distribution of interest, and let's assume that we found a
transition kernel P (x;B) such that the distribution of interest is a stationary distribution for this
kernel:

�S (B) =
R
P (x;B)�S (dx)

That is P (x;B) de�nes a Markov Chain, with a �xed point being the distribution of interest.
There are two additional conditions: we need the stationary distribution �S to be unique for P () ;
and we need the Markov Chain to converge assymptotically to the stationary distribution. Then we
could start with an arbitrary value of parameters and use this Markov Chain to recursively obtain
new values which would then by construction have the distribution of interest. That would allow
us to draw from the posterior distribution and, hence fully characterize its properties.
Let's think of a class of transition kernels with a transition function p (x; y) and a rejection

probability r (x):

P (x; dy) = p (x; y) dy + r (x) �x (dy)

Its most interesting property is that if p (x; y) is time-reversible, i.e. f (x) p (x; y) = f (y) p (y; x)
for any f () ; x; y, then

R
A
f (y) dy =

R
X
P (x;A) f (x) dx and the resulting Markov Chain converges

to a unique stationary distribution and satis�es the properties of irreducibility and aperiodicity.
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Di�erent versions of Markov-Chain Monte-Carlo methods are based on a di�erent choice of the
transition function p (x; y) :
The Metropolis-Hastings algorithm uses a function of the following form:

pMH (x; y) = � (x; y) q (x; y),

where q (x; y) is a known distribution, and

� (x; y) = min
n
f(y)q(y;x)
f(x)q(x;y)

; 1
o
:

It's easy to show, that using a symmetric density function q (x; y) = q (y; x) is very useful and
makes life a lot simpler. A classical example of such a distribution is a random walk:

y = x+ "; " � N (0; �2) :

In this simple form the Markov Chain Monte-Carlo method the algorithm boils down to wan-
dering along the parameter space � 2 � using a random walk:

��i+1 = �i + "; " � N (0;�)

Then the value of the posterior �
�
��i+1jY T

�
is computed for the proposed vector of param-

eters. It's trivial to verify that since the transition function characterizing the random walk
is symmetric: q (x; y) = q (y; x), - the expression for the transition probability boils down to:

� (x; y) = min

�
�(��i+1jY T )
�(�ijY T ) ; 1

�
= min

�
L(Y T j��i+1)�0(��i+1)

L(Y T j�i)�0(�i) ; 1

�
: Therefore, we don't even need to com-

pute the integral - the posterior could be computed up to an arbitrary constant.
Then essentially, if we are travelling up in the distribution, i.e. �

�
��i+1jY T

�
� �

�
�ijY T

�
; then

� (x; y) = 1 and we always accept the proposal: �i+1 = ��i+1: Otherwise, if the proposed vector of
parameters has a lower probability, i.e. �

�
��i+1jY T

�
< �

�
�ijY T

�
and we are travelling down in the

distribution, then � (x; y) =
�(��i+1jY T )
�(�ijY T ) < 1: In this case we draw a uniform random number ~z and

compare it with �, thus accepting the proposal with probability � and rejecting it with probability
1� �: When rejecting the proposal, we keep the original parameter vector and don't transit to the
new one: �i+1 = �i:
The choice of the initial value and the number of iterations in the Metropolis-Hastings algorithm

are important. If �0 is far from the center of the distribution, then the Markov Chain will be
travelling towards the center of the distribution for a signi�cant number of periods, and once it
comes to that region, it will then stay there forever. Hence, the estimates of all the moments will be
biased, if the initial vector is far from the center of the distribution. Therefore, it's useful to start
from the mode of the posterior, which is equivalent (in terms of speed) to �nding the maximum
likelihood estimate �rst.
To evaluate whether the Markov Chain was long enough one needs to verify that the means

and variances of the parameters are not moving. Slow convergence may be a result of a bad initial
guess as well as of serial correlation of the draws, which should be avoided if possible. In case the
distribution has multiple modes, it's useful to draw random starting points in the vicinity of the
mode and then combine the results. Another useful robustness check is the average acceptation
rate, which should be in the range [23%; 45%] according to Roberts, Gelman and Gilks (1994). It's
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also useful to set the matrix � of the random walk proportional to the inverse of the Hessian of the
posterior at the mode.
Another important question is how to choose a good prior. The mistake which is often made

when a researcher wants to �nd a "non{informative" prior is to set the prior density to be equal
to one. This leads to a wide use of improper priors, which do not have a well-de�ned pdf, and,
hence, violate the likelihood principle. Often the main reason is that an econometrician wants to be
classical but to use bayesian methods and introduces a 
at prior. Uniform priors are improper most
of the time. To discourage the use of 
at priors it's important to note, that almost any prior is not
invariant to reparametrization. Therefore, even if one uses a uniform distribution as a prior for the
parameter of interest, one can reparametrize the model by taking the inverse of the parameter, and
then the new prior will not be 
at any more, while equivalent to the original one. Hence, almost
any prior is informative.

Prior and Posterior Table
prior dist mean s.d. post mode s.d. mean lower upper

� beta 0.356 0.05 0.366 0.046 0.374 0.296 0.448
� beta 0.990 0.005 0.993 0.004 0.990 0.983 0.997
� beta 0.050 0.04 0.020 0.030 0.057 0.001 0.110
� beta 0.930 0.02 0.953 0.014 0.947 0.922 0.974
� normal 4.000 3.00 7.506 2.097 7.354 3.666 10.88
� normal 0.400 0.10 0.371 0.083 0.341 0.205 0.467
�" inv gam 0.050 Inf 0.111 0.026 0.130 0.075 0.182
�1 inv gam 0.025 Inf 0.007 0.001 0.007 0.005 0.009
�2 inv gam 0.025 Inf 0.006 0.001 0.006 0.005 0.007

Prior and Posterior Graph
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Example

As an example of the use of the McMc algorithm to obtain a posterior I use the standard version of
an RBC model, described in part 1 of the lecture notes, and solve it using a �rst-order perturbation
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(linearization) method. I use data on hp-�ltered yearly data on real consumption and output in
the US in the last 45 years.

Mode Check
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The pictures show that the standard RBC model with standard priors returns a reasonable
posterior. However, for at least half of the parameters the posteriors almost coincide with the
priors, which means that the data is not very informative about those parameters. Five blocks 2000
iterations each were enough to get a reasonable description of the posterior with the acceptance
ratio around 30%. The data is not informative about technology coe�cients �; �; �: However, data
indicates extremely high risk aversion and persistence of the TFP shock close to a random walk.
Measurement errors appear to be small. Dynare also provides tools for smoothing the state variables
of the model.
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Part 3 (Fabio Canova)

Introduction

The �rst section of part 3 of the lecture note discusses the various methods of searching for and
dealing with identi�cation problems in DSGE models. Brie
y the problems can be coming from
the model, from the objective function and from the �nite sample. If the parameters have no e�ect
on the dynamic properties of the model, the model should be changed. If the moments of the data
incorporated into the objective function do not carry information about the parameters of interest,
a full information (likelihood) approach is preferrable. If the sample is not big enough to infer the
parameters of interest, the dataset should be expanded.
The second section contains an overview of di�erent techniques used to extract the trend and

cycle components from non-stationary data. These are the Hodrick-Prescott, the Band-Pass and
the Christiano-Fitzgerald �lters. The lecture discusses each of the setups, problems associated with
their use and spurious cycles they can generate. It argues that one should be very careful when
choosing a particular way of pre-�ltering the data and one should avoid pre-�ltering if possible. The
third section brie
y discusses model evaluation and selection techniques.

Identi�cation Issues in DSGE models

There are many ways one can estimate DSGE models. The �rst set of methods called Limited
Information methods uses only a particular characterization of the properties of the data. These
include generalized method of moments (GMM) which �nds the parameters that match a particular
set of moments of the data, minimal distance methods which match impulse responses of the model
to the data, and sturctural vector autoregressions (SVAR) with magnitude and sign restrictions
(Canova (2002)).
The second set of methods called Full Information methods uses all the information incorporated

in the data by computing its likelihood. These include maximum likelihood (ML) which �nds the
mode of the likelihood and estimates standard errors using the Hessian at the mode, and the
bayesian approach, which �nds the posterior as a multiple of the likelihood and prior distribution
of the parameters of interest.
The last set of methods can be called calibration, because all the parameters are postulated in

order to recover the shocks hitting the system. The business cycle accounting framework also falls
into this category.
When matching impulse responses XM

t (�) = C (�) (l) ejt to a model-identi�ed shock e
j
t with

data responses Xt = Ŵ (l) ejt the distance between the two is minimized to obtain an estimate of
the corresponding vector of parameters: �̂ = argmin�



Xt �XM
t (�)




W (T )

, with W (T ) being the

weighting matrix. When using the maximum likelihood approach, the vector of parameters maxi-
mizes the likelihood of the data given parameters �̂ = argmax� L (X; �) : When using the bayesian
approach, the vector of parameters is the mean of the posterior distribution �̂ =

R
�P (�jX) d�

or the one that achieves the mode of the marginal density by maximizing a function which is the
product of the likelihood and the prior �̂ = argmax� L (X; �)�0 (�) :
The concept of identi�cation is connected with the question whether the mapping from the

parameters to the objective function is well behaved. For the parameter to be identi�ed one needs
the objective function to have a unique minimum (maximum) at the true parameter with a positive
(negative) de�nite Hessian having a full rank. In �nite samples it is also important that the curvature
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of the objective function is su�cient to �nd the optimal value.
In practice these are di�cult to verify because the mapping from structural parameters to

solution parameters is unknown, the objective function is typically a nonlinear function of solution
parameters. Besides, di�erent objective functions may have di�erent "identi�cation power" and the
standard rank and order conditions can't be used due to signi�cant non-linearity of the mapping
from structural to solution parameters.
There is a solution identi�cation problem if one cannot recover structural parameters from

the matrices describing the aggregate decision rule. There is an objective function identi�cation
problem if one cannot recover aggregate decision rule matrices from the objective function. There
is a population identi�cation problem if either of the two problems exists in which case even using
an in�nite data sample one cannot recover the parameters of interest using a particular method.
In addition there is a sample identi�cation problem if the sample is not big enough to recover the
parameters of interest, given that parameters are identi�ed in population. All of these problems
can occur separately or in conjunction.
If there is a solution identi�cation problem, that means the problem is due to model speci�cation.

In this case in order to make inference about the parameter of interest the researcher has to change
the model. If there is an objective function identi�cation problem, one should change the objective
function. For example, di�erent moments of the data carry information about di�erent parameters
of the model. Full information methods are generally preferrable to limited information approaches
because they take into account all of the moments of the data.
The �rst kind of problem that may arise is observational equivalence of two models. In this case

two models would lead to the same minimized value of the objective function for two di�erent models
or at two di�erent vectors of parameters of the same model. One example is a New Keynesian model
with sticky prices or sticky wages. Another example comes from the paper of Beyer and Farmer
(2004). They argue that a completely forward looking model of the form:

xt =
1
�1
Etxt+1

and a model with both forward-looking and backward-looking e�ects:

xt =
1

�1+�2
Etxt+1 +

�1�2
�1+�2

xt�1 + vt

have the same backward-looking solution:

xt = �1xt�1 + wt:

This implies that the three models are observationally equivalent and lead to the same minimized
value of the objective function. Another similar case is the new-keynesian model with sticky prices,
which gives the same law of motion for all the variables for two di�erent values of the Calvo
parameter: 0.25 and 0.75.
A similar case of partial or under-identi�cation is when a subset of parameters of the model can't

be identi�ed because the objective function uses only a portion of the restrictions of the solution
or a subset of the structural parameters enters in a particular functional form in the solution or
disappears from the solution. A typical example of this case is the New-Keynesian model with a
forward-looking policy rule:
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xt = a1Etxt+1 + a2 (Rt � Et�t+1) + v1t
�t = a3Et�t+1 + a4xt + v2t

Rt = a5Et�t+1 + v3t
This models implies a solution of the form:24 xt

�t
Rt

35 =
24 1 0 a2
a4 1 a2a4
0 0 1

3524 v1t
v2t
v3t

35
Depending on which impulse response the researcher tries to match she can recover some or

none of the parameters. However some of the parameters she cannot recover whatever method she
uses.
A more involved case of weak/asymmetric identi�cation is when the population mapping is very


at or asymmetric in some dimensions. This could be local or global as well as due to a particular
objective function or occur for all objective functions. An example is the classical real business
cycle model:

max�1t=0�
t c
1��
t

1��
s:t: ct + kt+1 = ztk

�
t + (1� �) kt

In this model you cannot separately identify � and � (weak identi�cation) as well as � and �
which are partially under-identi�ed. In this case changing the method and the objective function
won't help because the problem is inherent to the model.
To deal with these problems one should �rst correctly identify the problem. One major way of

helping solve identi�cation problems is by using all the information available, which means using the
likelihood function. Therefore use of full information methods is preferrable to limited information
methods. When you encounter weak/partial under-identi�cation, �xing some of the parameters
may be a solution, but the results may signi�cantly depend on the choice of the exact value. A
more robust approach is provided by Bayesian econometrics, which deals with these problems using
priors. Fixing a parameter is therefore equivalent to a very tight prior. The Bayesian approach
allows the researcher to vary the tightness of prior information.
However, neither full information nor Bayesian approaches can help, if the problem remains in

population. You can identify this case by the posterior distribution being identical to the prior,
which implies that data carries no information about the parameter of interest. A more complicated
combination of the two can arise, when the problem is in population, but a prior on another
parameter implicitly restricts the parameter of interest, which leads to the posterior being di�erent
from the prior. It is very hard to detect those kind of identi�cation problems.
There are several beliefs which are not true in general. Second-order approximations usually

have more curvature and help solving identi�cation problems, but depending on the particular
parameter combination, the second order approximation can actually have less curvature around
the true parameters. A related problem may arise when a second-order approximation is used to
compute welfare costs - very small changes in priors can cause big changes and even reversal of
welfare implications.
Ways to diagnose identi�cation problems include:

1. Plots/Preliminary exploration of the objective function

2. Numerical derivatives of the objective function at likely parameter values
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3. Condition numbers (ratios of largest to smalles eigenvalues) of the Hessian at the mode

4. Erratic parameter estimates as sample size increases

5. Large or uncomputable standard errors

6. Crazy t-tests

As a rule for identi�cation the model needs the state variables of the model to react to changes
in structural parameters. If that is not the case, the only way to solve the identi�cation problem
is to respecify the model. Also usually likelihood methods are preferrable to limited information
approaches, bigger samples to smaller samples, and full calibration or bayesian calibration preferable
to mixed calibration-estimation.
An important recent contribution by Iskrev (2007) proposes a new empirical approach to study

parameter identi�cation problems in DSGE models based on analytical evaluation of the Information
matrix of such models. The information matrix is decomposed into two parts: one that describes
the identi�cation properties of the model, and one that summarizes the properties of the data. This
allows the researcher to �nd out separately, whether the parameters of the model are identi�ed,
whether identi�cation is strong or weak, and whether identi�cation problems come from the model
or from the data.

Extracting Cyclical Information

Most theories model long-run trends separately from cyclical 
uctuations around those trends. Most
theories of business cycles are stationary while most data series available are non-stationary. An
important practical issue is how to decompose nonstationary time series of interest into a permanent
and cyclical component. Any decomposition of data into a cyclical component and a trend embeds
an implicit assumption on how they di�er from each other.
When the model can generate non-stationary data the way to compare it with real data is

generally to apply the same methods/statistics/impulse-responses to both the actual data and data
simulated from the model. Comparing theoretical impulse-responses with impulse-responses from
the data is usually a mistake.
When the theory does not imply any trends and hence the model cannot generate non-stationary

data, some ad hoc assumptions have to be used to �lter out the cyclical component. The most
commonly used methods are the Hodrick-Prescott �lter and the Band-Pass �lter.
The HP �lter minimizes the distance between the trend and the data, given a constraint on the

speed of change of the derivative of the trend. The tightness of the constraint is controlled by a
smoothnessparameter � :

minyxt �
T
t=0

n
(yt � yxt )

2 + �
��
yxt+1 � yxt

�
�
�
yxt � yxt�1

��2o
If � goes to 0, then the trend is equal to the data: yxt = yt: Typically (for US data) quarterly

data trends have a parameter around � = 1600. Ravn and Uhlig (2002) �nd that the optimal
� = 129000 for monthly data, and � = 6:25 for yearly data. The idea comes from the curve-
�tting literature, which chooses � to make mean square error of the �tting error minimal, implying

�� =
�2cycle
�2trend

: Decomposition of the HP �lter shows that it's equivalent to an operator of the form:
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Bc (L) = B (L) (1� L)4 ' (1�L)2(1�L�1)
2

1
�
+(1�L)2(1�L�1)2 :

It's phase diagram cuts the low frequency component of the data:

As can be easily seen, it eliminates linear and quadratic trends and makes integrated series of
order four (I(4)) stationary. When applied to stationary data, it damps 
uctuations with periodicity
24-32 quarters per cycle, and passes short cycles without changes. However, if the series is close to
a random walk (I(1)), then HP �lter damps long and short run growth cycles, and ampli�es growth
cycles at the business-cycle frequency. For example, the variance of cycles with average duration of
7.6 years is multiplied by a factor of 13, which generates spurious cycles. The problem is even larger
when the time series is integrated of order two (I(2)). Therefore, the HP �lter can produce spurious
business cycle phenomena from random walk data. Other problems include asymmetric importance
of data at the beginning and the end of the dataset, unwanted high frequencies left in the data set,
and di�erent cycle lengths making cross-country comparisons di�cult. A partial solution to the
latter problem has been proposed by Marcet and Ravn (2000), restricting the relative variability of
the trend to the cycle across countiries.
Band-pass �lters are combinations of high-pass and low-pass moving-average �lters, which,

following Baxter and King (1999) truncate the in�nite dimensional inverse Fourier transform:
B (L) = (1� L) (1� L�1)B� (L) : This approach makes stationary series with up to quadratic
deterministic trends and makes series stationary if they are integrated of order up to two (I(2)).
Therefore, it has problems similar to the HP �lter. Christiano and Fitzgerald show that non-
stationary asymmetric approximation of a band-pass �lter is optimal by avoiding important leakage,
compression and ampli�cation e�ects for di�erent frequencies (see picture).
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The major problem with this approach is that to apply the BK or CF version of the �lter
the researcher needs to know the properties of the time series of interest. The asymmetric �lter
also changes the lead-lag properties of the time-series, creating important phase shifts. Moreover,
the CF �lter has time-varying parameters, which makes the properties of the resulting series non-
comparable for di�erent time intervals.
Given all these problems the main prescription is to avoid pre-�ltering the data when possible.

Another alternative would be to use model-based �lters, which would derive the distinction between
the cycle and the trend conditioned on the model. For example when theory implies particular closed
forms for the trend, their parameters can be estimated jointly with other parameters of the model.

Model Evaluation and Forecasting

Let the model be described by the equation, x = m (p; �m; ") ; where p is the policy variable, m is
the model, �m are parameters of model m, " is the random error.

1. If the model parameters and errors are know, then set up a loss function l (x) and �nd the
policy p which mimizes it:

minp l (x) = minp l (m (p; �m; "))j�m;" :

2. If the errors are unknow, but their pdf �" is known, then l (x) is a random variable and for
each p the loss function has a distribution. In this case one should evaluate l�" (m (p; �m; "))
and �nd the p which minimizes it's variability: minp V ar

�
l�" (m (p; �m; "))

�
=

minp
�R
l�" (m (p; �m; "))

2 d�" � El�" (m (p; �m; "))
2� :

3. If both the errors and the parameters �m are unknown, then evaluate policies using l�"

�
m
�
p; �̂mjd; "

��
and an estimate �̂m of the parameter given the data d or average over an empirical distribution
of parameters
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R
l�" (m (p; �m; ")) d� (�mjd) d�"

where d� (�mjd) is the posterior distribution of the parameters conditional on the data.

4. If on top of that the model is unknow, one should use model selection criteria such as AIC

and BIC and then estimate l�"

�
m̂
�
p; �̂mjd; "

��
or use model averaging:

�m� (mjd)
R
l�" (m (p; �m; ")) d� (�mjd) d�"

where � (mjd) is the posterior of the model given data.
There are two types of model evaluation excercises: in-sample and out-of-sample. In-sample

excercises evaluate the �t of the model. Out-of-sample excercises consider the forecasting properties
of the model. The main ways of assessing in-sample �t are comparing root mean square di�erences
between predicted and actual values (RMSE), correlations between predicted and actual values, tests
of in-sample performance (when joint and separate estimation of two or more models is performed
and �2 tests on implied restrictions are performed), unbiasedness regressions, predictive regressions,
unobserved factor models.
If models have a Bayesian setup, one can use marginal likelihood, even with non-informative

but proper priors. The marginal likelihood of the data given the model is

ML (yjj) =
R
f (y; �) g (�jMj) d�:

Then comparing alternative models j and k can be done using a posterior odds ratio:

PO =
g(Mj)ML(yjj)
g(Mk)ML(yjk) :

Assessing out-of-sample �t of the model boils down to estimating the model using only a part
of the samle and then projecting it into the future and comparign the same statistics to evaluate
the di�erence between actual data and the forecast coming from the model.
A novel method of evaluating DSGE models has been proposed by Del Negro, et. al. (2006).

It combines data simulated from a DSGE model with actual data and estimates a VAR using the
big sample. This is equivalent to weighting a highly restricted DSGE model with a completely
unrestricted VAR with weights � and 1: � = 0 is equivalent to not using the model, while � = 1
means the data doesn't contradict the model. The interpretation of this approach is in taking an
optimal combination of a completely unrestricted model and a very restricted one.
If the DSGE model is bad, the weight on it will be low, while if it's good, it can improve the �t

of the VAR and the weight will be high. The approach can also be interpreted as using a DSGE
model as a prior for a VAR. The main advantage of the approach is in joint estimation of the
parameters of the DSGE model � and the degree of misspeci�cation of the model � by maximizing
the marginal likelihood.

19



Part 4 (Tao Zha)

Introduction

The �rst section of part 4 of these lecture notes discusses identi�cation issues in Structural Vector
Autoregressions (SVARs). Su�cient conditions for both local and global identi�cation are described.
These conditions extend the existing literature by providing simple means of testing for identi�caion
in SVARs. The second section contains an overview of methods for estimating Regime-Switching
DSGE models using the MCMC algorithm. The last section contains a discusion of e�cient ways
to compute the marginal data density.

Identi�cation Issues in SVARs

Structural vector autoregressions can in general be represented by the following equation:

y0tA0 = �
p
l=1y

0
t�lAl + z0tCz + "0t

The compact form of this expression can be written as

y0tA0 = x0tA+ + "0t

The reduced form is then described by:

y0t = x0tB + u0t;

where B = A+A
�1
0 ; u0t = "0tA

�1
0 ; E (utu

0
t) = � = (A0A

0
0)
�1

Theorem 1 Two sets of structural parameters, (A0; A+) and
�
~A0; ~A+

�
, are observationally equiv-

alent, i.e. A+A
�1
0 = ~A+ ~A

�1
0 and A0A

0
0 =

~A0 ~A
0
0; if and only if there exists an orthogonal matrix P

such that A0 = ~A0P and A+ = ~A+P:

De�nition 1 The set of structural parameters (A0; A+) is globally identi�ed if and only if there is

no other set of parameters
�
~A0; ~A+

�
that is observationally equivalent to (A0; A+).

De�nition 2 The set of structural parameters (A0; A+) is locally identi�ed if and only if there

exists an " > 0 such that there is no other set of parameters
�
~A0; ~A+

�
in the open "-ball of (A0; A+)

that is observationally equivalent to (A0; A+).

The class of restrictions of interest can be written as:

R =
�
(A0; A+) jQjf (A0; A+) ej = 08j = 1; n

	
If restrictions are applied directly to the SVAR representation then the function

f (A0; A+) =

�
A0
A+

�
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The hth impulse responses are de�ned as:

Lh =
�
A�10 J 0B̂hJ

�0
where

B̂ =

2664
A1A

�1
0 In ::: 0

::: ::: ::: :::
Ap�1A

�1
0 0 ::: In

ApA
�1
0 0 ::: 0

3775 and J =
2664
In
0
:::
0

3775
Restrictions on impulse responses can be imposed using the following function:

f (A0; A+) =
�
L00 ::: L0p

�0
:

The long-run impulse responses are equivalent to:

L1 = (A
0
0 � �

p
l=1A

0
l)
�1

In this case f (A0; A+) =
�
L00 L01

�0
:

De�nition 3 If (A0; A+) 2 R and Mj (X) =

�
QjX�
Ij 0

� � is of rank n for all j = 1; n then SVAR
is globally identi�ed.

In this speci�cation k is the number of restrictions, n is the size of the state vector, j takes values
from 1 to n, Qj has size k � k; X has size k � n; Mj has size (k + j)� n; 0 has size j � (n� j) :

Theorem 2 An SVAR with restrictions R is exactly identi�ed if and only if for almost any reduced
form (B;�) there exists a unique structural parameter (A0; A+) 2 R such that B = A+A

�1
0 ;� =

(A0A
0
0)
�1 :

Theorem 3 An SVAR is exactly identi�ed if and only if for almost every structural parameter
(A0; A+) there exists an orthogonal matrix P such that (A0P;A+P ) 2 R:

Theorem 4 An SVAR is exactly identi�ed if and only if the total number of restrictions is equal
to n(n�1)

2
and the rank condition of theorem 1 is satis�ed.

Theorem 5 An SVAR is exactly identi�ed if and only if rank Qj = n� j for all j = 1; n.

Let's illustrate these results using a standard New-Keynesian model:

�t = �Et�t+1 + �xt + �s"st
xt = Etxt+1 � � (Rt � Et�t+1) + �d"dt

Rt = ���t + �R"Rt
with "t � N (0; I3)

The state of the system is a 3-vector yt = [�t; xt; Rt]
0 : One can rewrite this system in matrix

form as:
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y0t

24 1=�s 0 ���=�R
��=�s 1=�d 0
0 �=�d 1=�R

35 = Ety
0
t+1

24 �=�s �=�d 0
0 1=�d 0
0 0 0

35+
24 "st
"dt
"Rt

35
The solution to this forward-looking model is

y0t =
1

1+����

24 �s �����d ���R
��s �d ����R
����s ���d �R

3524 "st
"dt
"Rt

35
Since � does not enter the solution, it is not identi�ed. The system can then be rewritten as:

y0tA0 = "st with A0 =

24 1=�s 0 ���=�R
��=�s 1=�d 0
0 �=�d 1=�R

35
Clearly any two di�erent points (�s; �d; �R; �; � ; ��) imply a di�erent matrix A0: Therefore rest

of the parameters are locally identi�ed. However there is no global identi�cation. For example, if
(�s = 2; �d = 1; �R = 0:2; � = 0:58; � = 0:54; �� = 2)
imply the same dynamics as
(� = 2:5; �d = 1:02; �R = 0:2; � = 0:9; � = 0:566; �� = 2:5) :
Another version of the same model includes a lag of the interest rate:

�t = �Et�t+1 + �xt + �s"st
xt = Etxt+1 � � (Rt � Et�t+1) + �d"dt

Rt = �RRt + (1� �R) (���t + �xxt) + �R"Rt
with "t � N (0; I3)

In this case the model can be written in the following lead-lag form:

y0tB0 = y0t�1C + Ety
0
t+1D + "t; where

B0 =

24 1=�s 0 ���=�R
��=�s 1=�d ��x=�R
0 �=�d 1=�R

35 ; D =

24 �=�s �=�d 0
0 1=�d 0
0 0 0

35 ; C =

24 0 0 0
0 0 0
0 0 �R=�R

35
The minimal state variable representation of this system satis�es A0 = B0 � A1A

�1
0 D and

A1 = C; that implies a matrix:

A0 =

24 1=�s 0 ���=�R
��=�s 1=�d ��x=�R
a031 �=�d 1=�R

35 where � = �s(1+���(1+�)+a031���s)a031
�R(a031�s+��)

:

To test the restrictions let's form all the necessary matrices:

f (A0; A1) =

26666664
0 1=�s ���=�R
1=�d ��=�s ��x=�R
�=�d a031 1=�R
0 0 0
0 0 0
0 0 �R=�R

37777775 ; k=6,n=3,j=1,2,3.
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Here the columns of the stacked matrices A0 and A1 are sorted by the decreasing number of
restrictions (zeros).

Q1 =

26666664
1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

37777775 ) Q1f (A0; A1) =

26666664

0 1
�s

� ��
�R

0 0 0
0 0 0
0 0 �R

�R

0 0 0
0 0 0

37777775

Q2 =

26666664
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

37777775 ) Q2f (A0; A1) =

26666664

0 0 0
0 0 0
0 0 �R

�R

0 0 0
0 0 0
0 0 0

37777775

Q3 =

26666664
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

37777775 ) Q3f (A0; A1) =

26666664
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

37777775
Therefore, matrices Mj (f (A0; A1)) for j = 1; 2; 3 are equal to:

M1 =

2666666664

0 1
�s

� ��
�R

0 0 0
0 0 0
0 0 �R

�R

0 0 0
0 0 0
1 0 0

3777777775
M2 =

266666666664

0 0 0
0 0 0
0 0 �R

�R

0 0 0
0 0 0
0 0 0
1 0 0
0 1 0

377777777775
M3 =

26666666666664

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

37777777777775
Since they all have rank 3, the system is globally identi�ed.

Regime-Switching Models

Regime switches are introduced into DSGE models if there are reasons to assume, that dynamics
of the model in di�erent periods of time have di�erent properties. This is typically a result of
changes in structural parameters, representing policy, market structure, variances or persistence of
shocks. A parsimonious way of capturing such changes is by letting the parameters take a �nite set
of values and switch between them following a �rst-order Markov chain. Then in addition to the
main parameters of the model the transition matrix has to be estimated.
Let yt be the vector of endogenous variables, zt - vector of exogenous variables, xt = [y

0
t; z

0
t]
0 ; st

- state governed by a Markov chain, � - constant model parameters, Q = [qij] - transition matrix
with qij being the probability of transiting from state j to state i. Let the solution of the model be
summarized by the state-space representation:
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xt = c (st; �) + F (st; �)xt�1 +G (st; �) "t
yt = H (st; �)xt + ut

Then the likelihood of the data given the parameters can be computed using the formula:

L (YT j�;Q) = �Tt=1�stp (ytjYt�1; xt; st; �;Q) p (xt; stjYt�1; xt�1; st�1; �;Q)

The posterior density is equal to the likelihood times the prior:

p (�;QjYT ) / L (YT j�;Q) � p (�;Q)

The empirical posterior density is obtained using the Kalman �lter combined with the Gibbs
sampler. In practice the number of parameters is too large for simultaneous estimation of � and
Q: The procedure tends to be very time-consuming, and the Hessian - very inaccurate. A block
optimization algorithm can be used instead, with optimizing over (subblocks of) � and Q in turns.
In this case p (sT jYT ; xT ; �; Q) can be evaluated recursively, p (�jYT ; xT ; sT ; Q) is obtained using some
form of Metropolis-Hastings or Maximum Likelihood, while p (QjYT ; xT ; sT ; �) is obtained sampling
from a Dirichlet distribution using a Dirichlet prior.
If the model is more complicated and the transition equation coe�cients depend both on st and

st�1 :

xt = c (st; st�1; �) + F (st; st�1; �)xt�1 +G (st; st�1; �) "t

then the generalized state can be de�ned as ~st = (st; st�1) :
For example let st only take two values f1; 2g : Then Q is a 2x2 matrix:

Q =

�
q11 q12
q21 q22

�
Then the generalized state ~st takes four values: (1; 1) ; (1; 2) ; (2; 1) ; (2; 2). The corresponding

generalized transition matrix is:

~Q =

2664
q11 q11 0 0
0 0 q12 q12
q21 q21 0 0
0 0 q22 q22

3775
If several parameters change regimes, then each has a transition matrix Qi: The transition matrix

for the generalized state is then equal to Q = Q1
 :::
Ql: The tensor product representation of Q
implies that if i = (i1; :::; il) and j = (j1; :::; jl) then qij = �

l
k=1q

k
ik;jk

: Therefore, the linear restriction
on the column of Q is of the form:

qj =Mjbj; where bij � 0; �ibij = 1:

Any linear set of restrictions on Q one can imagine can be expressed in terms of a sequence of
M matrices of this form.
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Computing the Marginal Data Density

Marginal data density measures the �t of the model and is the main means of model evaluation
when the Bayesian approach is used. To compute the marginal data density, de�ned as

� (YT ) =
R
� (YT j�)� (�) d�;

harmonic means are typically used. Let h (�) be a p.d.f. of some known distribution and denote:

m (�) = h(�)
�(YT j�)�(�)

Then the marginal data density can be approximated using the output of the Metropolis-Hastings
algorithm:

�̂ (YT ) =
1
N
�Ni=1m

�
�(i)
�

Simple harmonic mean is computed using a function with a uniform p.d.f (i.e. h (�) = const ).
A modi�ed harmonic mean uses a truncated normal p.d.f. of the form:

�N;p =
n
� :
�
� � ��

�0 �
�1N �
� � ��

�
< �2p (n)

o
and p 2 (0; 1)

h (�) =
�(�2�N;p)

p

j�
N j�1=2
(2�)n=2

exp
h
�1
2

�
� � ��

�0 �
�1N �
� � ��

�i
A more robust "New" modi�ed harmonic mean, proposed by Zha et.al.(2007) uses an elliptical

distribution around the mode of the posterior density (let hat in �̂ and 
̂ represent the mode):


̂ = 1
N
�Ni=1

�
�(i) � �̂

��
�(i) � �̂

�0
An elliptical distribution centered at �̂ and scaled by Ŝ = 
̂1=2 has the form:

g (�) = �(k=2)

2�k=2jŜj
f(r)
rk�1 ;

where f (r) = vrv�1

bv�av � 0 on r 2 [a; b] ; r =
r�

�(i) � �̂
�0

̂�1

�
�(i) � �̂

�
and k is the dimension of

�.
A random variable with an elliptical distribution can be obtained by drawing x from a k-

dimensional gaussian distribution and then transforming it as follows:

� = r
kxk Ŝx+ �̂

The values of v, a and b can be obtained using the 10th and 90th percentiles of the empirical
distribution of posterior draws and the following formulas:

v = log(1=9)
log(c10=c90)

; b = c90
0:91=v

; a = c10:

Now to get the constant of proportionality of the truncated distribution right we need to renor-
malize:
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�U = f� : m (�) < Ug
h (�) = �(�2�U )

qU
g (�)

A simpler and more e�cient method was proposed by Mueller. If g (�) is the target kernel, and
g (�) = c�g� (�) then the goal is to �nd an accurate estimate of c�: De�ne a function:

f (c) = Eh

h
1� cg�(�)

h(�)

i
+
� Eg

h
1� h(�)

cg�(�)

i
+

This function is monotonically decreasing and hence the equation f (c) = 0 has a unique solution,
which could be found by bisection. However the proposed method is not more accurate then the
previous one, because the funciton f (c) is typically very 
at in the vicinity of the solution.
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