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Abstract

We present a dynamic model of discrete choice with limits on agents’ ability to process informa-

tion. Using a unique experimental dataset, we provide empirical evidence to the theoretical findings

that people: a) behave probabilistically; b) pay less attention and, as a result, are more prone to

error when differences between choice options are smaller; c) as the experiment progresses, tend to

make more consistent and sharper choices. We show that experimental evidence agrees more with a

setting in which participants vary their cognitive capacity rather than have a fixed bound on their

knowledge, as postulated by many bounded rationality models.

JEL: D81, D03, C91, C44.

Keywords: Bounded Rationality, Information Theory, Rational Inattention, Discrete Choice, Be-

havioral Experiments.

∗Anton Cheremukhin: Federal Reserve Bank of Dallas, 2200 N Pearl St, Dallas TX 75201, chertosha@gmail.com,

214-922-6785. Anna Popova: University of Illinois at Urbana-Champaign, 603 East Daniel St, Champaign, IL

61820, apopova2@illinois.edu. Antonella Tutino: Federal Reserve Bank of Dallas, 2200 N Pearl St, Dallas TX

75201, tutino.antonella@gmail.com, 214-922-6804. We are grateful to Michel Regenwetter for access to the data,

encouragement and helpful comments. We also thank Tony Marley and Duncan Luce for questions and suggestions

which helped improve the draft of the paper. All remaining errors are our own. Popova’s work and data collection

were supported by National Science Foundation grant SES # 08-20009 (PI: M. Regenwetter, University of Illinois at

Urbana-Champaign), entitled A Quantitative Behavioral Framework for Individual and Social Choice, awarded by

the Decision, Risk and Management Science Program. IRB approval (Protocol: 08387, RPI: M. Regenwetter) has

been obtained for the experiment on human subjects. Any opinions, findings or recommendations expressed in this

publication are those of the authors and do not necessarily reflect the views of their colleagues, the National Science

Foundation, the University of Illinois, the Federal Reserve Bank of Dallas or the Federal Reserve System.

1



1 Introduction

Since the findings of Mosteller and Nogee (1951) the behavioral choice literature has confronted the

challenge of modeling bounded rationality. One particularly troubling aspect of bounded rationality

is the inconsistency of choices when a decision maker faces the same choice options repeatedly.

Profound variablity of choices made by the same decision maker within the same experimental

session is a well-established finding in the literature.1

Most responses to this challenge from the micro literature have focused on developing probabilis-

tic choice models which can fit the observed error distributions.2 The majority of these models are

static. By contrast, the macroeconomic literature has mostly focused on developing dynamic models

of bounded rationality, capturing repeated choices in relevant dynamic stochastic macroeconomic

settings (e.g., consumption and pricing behavior).3

We propose a unified approach to modeling bounded rationality in macroeconomics and in be-

havioral choice. To bridge the gap between these literatures we develop a dynamic theory of discrete

choice under rational inattention. Our theory extends the cross-sectional dimension of rational inat-

tention theory by introducing explicit costs of processing information. This extension makes our

dynamic theory compatible with both macroeconomic settings and behavioral experiments with

repeated choices.

To test the predictions of our theory, we use a unique experimental dataset where each partici-

pant faces each set of options 60 times. This dataset allows us to obtain estimates of information

costs for each participant, and investigate their dynamic behavior over the course of two experimen-

tal sessions. Our estimates inform both the behavioral choice literature and the macro literature on

the best common approach to modeling bounded rationality. Our main findings can be summarized

as follows.

First, we find that the majority of participants in the experiment actively respond to incentives

by processing more information and being more accurate when stakes are higher. Thus, models in

1For a discussion of these issues see among others Hey and Orme (1994), Hey (2001), Regenwetter et. al. (2010)

and (2011).
2Major works on probabilistic choice models include, among others, Fechner (1860), Thurstone (1927), Luce

(1959), Block and Marschak (1960), Yellott (1977) and Falmagne (1978).
3The growing literature on applications of rational inattention includes among others Mankiw and Reis (2002),

Moscarini (2004), Gabaix and Laibson (2005), Reis (2006a) and (2006b), Mackowiack and Wiederholt (2009), Tutino

(2011) and (2012).
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which agents can rationally adjust information processing capacity, as if facing a linear subjective

cost of information, are empirically more sound than models with fixed thresholds as constraints

on information, commonplace in the macro literature.

Second, our dynamic theory predicts that over time a decision-maker uses her capacity to acquire

information about the environment, which leads to an improvement in the consistency of her choices.

In agreement with this prediction, we find that the observed ability of participants to process

information and the consistency of their choices gradually increase during the experiment.

We find that for the majority of participants, 60 repetitions of each set of options are barely

enough to acquire knowledge of the experimental setup. Given that, apart from the number of

repetitions, our experimental design is standard practice,4 this finding suggests that such a large

number of repetitions is absolutely necessary to distinguish both probabilistic choice theories and

decision theories.

We model a person’s limited ability to process information using Shannon’s (1948) information

theory and, in particular, Shannon’s channel capacity.5 In our model, people choose their preferred

amount of information and allocation of attention under the constraint that they have limited

capacity to process information. We capture the idea that processing information is costly by

associating a utility cost to the capacity of the channel.

From the channel capacity, we disentangle a cognitive constraint, i.e. the capacity constraint

imposed by the information available, from a perceptional constraint, i.e. the limits to attention

imposed by the decision maker’s utility associated with the outcomes. From a modeling perspective,

these two constraints map onto two specifications of the cost function. The first specification

postulates a fixed bound on the cognitive capacity of processing information, reminiscent of many

bounded rationality models.6 The second specification postulates a linear cost associated with

processing information with varying capacity.

Using experimental data, we are able to characterize the relative importance of these two con-

straints in people’s decisions. We compare the number of people in our sample for which the

assumption of fixed capacity cannot be rejected with the number of people for which the capacity

4Most experiments repeat each set of choice options no more than 5 times, and pool choices among participants.

Hey and Orme (1994), Harless and Camerer (1994), Holt and Laury (2002) and Birnbaum (2008) are prominent

examples among this majority, while Regenwetter et. al. (2011) belongs to rare exceptions.
5For a discussion of uses of information and knowledge and other related issues see Section 6.
6See, e.g., Rubinstein (1998); Gabaix (2012); Mankiw and Reis (2002); Mackowiak and Wiederholt (2009).

3



varies but the shadow cost of processing information is fixed. We find that the behavior of the

majority of participants agrees with the varying capacity specification.

We use a unique dataset collected in Michel Regenwetter’s laboratory at the University of

Illinois at Urbana-Champain to provide empirical support to our theoretical predictions. The

experimental design allows us to estimate costs of information processing at the individual level

using likelihood methods. We provide an upper bound on the information costs when the data

are read through the lens of a static version of the model as opposite to the dynamic model. The

purpose of using a static model is twofold. First, since the static model is solvable in closed-form, the

estimates are transparent. Second, our static model of rational inattention is directly comparable

with probabilistic choice models in the literature.

The relationship between rational inattention theory and the logit model of discrete choice has

been independently discovered by Matĕjka and McKay (2012). They study a special case of our

static model with non-stochastic choice options. Our paper extends the discrete choice rational

inattention theory to dynamic settings and shows that the data agree with its dynamic predictions.

In a model close to ours, Woodford (2012) studies a decison-maker’s optimal perceptual distor-

tion in a stochastic environment. Explicit modeling of discrete choices in repeated settings as well as

the dynamic theory of evolution of perceptions make our contribution distinct and complementary

to Woodford’s approach.

The paper also relates to Fudenberg and Strzalecki (2012) who study stochastic dynamic choice

rules. While in their paper the decision maker’s dynamic decisions in different periods are driven

by two types of recursivity axioms, in our paper the dynamic decisions are guided by the decision

maker’s endogenous choice of information in each period.

Our paper relates to the dynamic decision field theory of Busemeyer and Townsend (1993).

Consistent with their finding on the trade-off between speed and accuracy in decision making, we

document that such a trade-off is guided by people’s utility and modulated by their information

processing constraints. In contrast to decision field theory, our theory predicts endogenous changes

in the behavior of participants over the course of the experiment, when exogenous conditions are

unchanged.

Finally, the paper contributes to the bounded rationality literature prominent in economics.

Much in the spirit of Gabaix (2012), the paper proposes a tractable cost function capturing the

limits to people’s ability to process information. Different from Gabaix (2012), as well as from
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Mankiw and Reis (2001) and Mackowiack and Wiederholt (2009), our paper shows that a bound

on the information-processing capacity is not supported by experimental data. Meanwhile, we find

that a linear shadow cost of processing information associated with a varying capacity utilization

is in agreement with the data.

The paper is organized as follows. Section 2 introduces our dynamic model which is used to

make testable predictions. Section 3 describes the experiment and the methodology applied to

experimental data. Section 4 shows the results and compares different decision theories. Section

5 concludes. All proofs are in an appendix. Another appendix covers a discussion of rational

inattention as a theory of probabilistic choice and elaborates on coding and knowledge.

2 Theoretical Framework

This section formally establishes the theoretical environment of the paper. First, we describe the

information processing constraint. Then we proceed to illustrate the decision maker’s problem in a

setting that allows for repeated choices. In order to ease the comparison of our theory with existing

statistical models, we further provide a version of the decision-maker’s problem in a static environ-

ment. We conclude this section with a set of testable predictions arising from both environments.

2.1 Information processing constraint in a discrete environment

Consider a decision-maker (DM henceforth) faced with a choice among K risky alternatives (gam-

bles). Each gamble k ∈ {1, ...,K} has J possible outcomes with Xkj representing payoffs and pkj

respective probabilities:

k : {Xkj , pkj}Jj=1 ,

J∑
j=1

pkj = 1, j ∈ {1, ..., J} .

Following rational inattention theory, we allow the DM to choose a probability distribution {sk}

over options, where s (k) denotes her probability of choosing gamble k:

{s (k)}Kk=1 ,

K∑
k=1

s (k) = 1, k ∈ {1, ...,K} .

We also allow the DM to have a prior bias towards one option against any other, which may

stem from the way these gambles are presented or from her own experience. We denote the DM’s

prior distribution over options as {g0 (k)}, defined in the same way as {s (k)}.
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The amount of information processed by the DM reflected in her choice of s (k) is captured by

Shannon’s Mutual Information between the random variables K and J . The mutual information

between K and J denoted as I (K; J) is given by:

I (K; J) =

K∑
k=1

J∑
j=1

f (k, j) log2

(
f (k, j)

g0 (k) pkj

)
,

where f (k, j) = s (k) pkj is the joint distribution of random variables K and J .

Note that there are two sources of information about K whereas the only source of information

about J rests on pkj . However, the DM has no means of influencing the possible outcomes in J by

affecting the probability pkj , as evident by the definition of {g0 (k)} in her prior. As noted in Cover

and Thomas7, in this special case of independence between random variables, mutual information

takes the form of relative entropy, a quantity measuring the distance between the chosen probability

distribution, {s (k)}, and the prior, {g0 (k)}. It follows that8:

I (K; J) =

K∑
k=1

J∑
j=1

s (k) pkj log2

(
s (k) pkj
g0 (k) pkj

)
(1)

=

K∑
k=1

sk log2

(
s (k)

g0 (k)

)
= d (s (k) ‖ g0 (k))

We can relate the previous expression to entropy and mutual information by writing:

d (s (k) ‖ g0 (k)) = −H (K)−
K∑
k=1

s (k) log2 g0 (k) (2)

where H (K) in (2) is the entropy of the random variable K and correseponds to the mutual

information of a random variable with itself (also dubbed “self-information”) and the second term

is the distortion introduced by the prior {g0 (k)}.

The interpretation of this quantity is that the more information the DM processes about the

gambles with respect to her original prior {g0 (k)}, the higher the relative entropy. Following rational

inattention theory of Sims (2003), we shall model bounded rationality of the DM by constraining

the amount of information she can process. To ease on notation, in the remainder of the paper let

us define:

I (s (k) ; g0 (k)) ≡ d (s (k) ‖ g0 (k)) .

7See Cover and Thomas (1991), Chapter 2.
8This equivalence has been noted in Shannon (1948) and discussed in Cover and Thomas (1991).
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2.2 The Dynamic Model

Consider a game (experimental setup) that is composed of questions, denoted by q, and answers

denoted by k.We begin by defining the space of questions as Ωq which contains Q elements and the

set of answers as Ωk containing K elements. We assume that each question q ∈ Ωq can be answered

with each answer k ∈ Ωk. Answers and questions respectively are mutually exclusive. The state

space contains all the combinations of questions and answers and it is denoted by Ω = Ωq × Ωk.

Elements of the state space ω = (q, k) ∈ Ω, represent pairs of potential questions and answers to

them. We shall use ω and (q, k) interchangeably.

We define the state variable g (ωt) of the DM as a probability distribution over all pairs of

questions and answers in period t. The variable g (ωt) represents prior beliefs of the DM about

the probabilities of each combination of a question and an answer occurring in the current period.

These are the beliefs the DM is endowed prior to seeing the computer screen in period t. Thus,

g (ωt) is a function g : Ω −→ [0, 1] characterized by:∑
ωt∈Ω

g (ωt) =
∑
qt∈Ωq

∑
kt∈Ωk

g (qt, kt) = 1, g (ωt) ≥ 0, ∀t.

The stochastic process which governs the realizations of questions and possible answers to them

is assumed to be first-order Markov, with a law of motion characterized by the transition matrix

P (ωt+1|ωt) : Ω × Ω −→ R. Consistent with our experimental setting, we assume that answers

and questions evolve independently from each other with a computer selecting the next question

using a transition matrix r (qt+1|qt) for the questions and ρ (kt+1|kt) for the answers. Thus, the

transition matrix for the system is given by P (ωt+1|ωt) = r (qt+1|qt)~ρ (kt+1|kt) where “~” denotes

Kroenecker product.

Let ω̂ represent the observation of the computer screen by the DM. We assume that the random

variable ω̂ takes a value in Ω. Let the variable p (ωt, ω̃t) be the joint distribution of (ω, ω̂) which is

chosen by the DM at time t. Let h (ωt) =
∑
ω̂t
p (ωt, ω̂t) be the marginal probability distribution

from which the DM draws her answers at time t. We assume that the DM chooses such a probability

after seeing the computer screen.

The probability of selecting answer k given the last observation ω̂ equals:

s (kt|ω̂t) =
∑
qt∈Ωq

p (qt, kt|ω̂t) . (3)

7



From the DM’s perspective, the transition function is a function R(ωt+1, ω̂t+1 |ωt, ω̂t) : Ω ×

Ω × Ω × Ω −→ R which maps current values of (ωt, ω̂t) into their future values. The relationship

between R(ωt+1, ω̂t+1 |ωt, ω̂t) and P (ωt+1|ωt) is given by manipulating the joint distribution of

(ωt+1, ω̂t+1|ωt, ω̂t) denoted by M (ωt+1, ω̂t+1, ωt, ω̂t). Let N (ω̂t+1, ω̂t+1|ωt, ωt) be the distribution

of current and future observations (ω̂t+1, ω̂t) conditional on current and future values (ωt+1, ωt) and

note that by Markovianity such a function boils down to N (ω̂t+1, ω̂t+1|ωt, ωt) = f (ω̂t+1|ωt+1) =

p(ωt+1,ω̂t+1)
Σω̂t+1

p(ω̂t+1,ωt+1) . Recall that h (ωt) =
∑
ω̂t
p (ωt, ω̂t). Then the relationship between R (:) and P (:)

is given by:

R (ωt+1, ω̂t+1|ωt, ω̂t) =
f (ω̂t+1|ωt+1) (P (ωt+1|ωt)h (ωt))

p (ωt, ω̃t)

=
f (ω̂t+1|ωt+1)

f (ω̂t|ωt)
P (ωt+1|ωt) (4)

We can cast the DM’s problem into the following Bellman equation:

W (g (ωt) |ω̂t) = max
p(ωt,ω̂t)

∑
ωt∈Ωω

V (ωt|ω̂t) s (kt|ω̂t)− C (κt)

+ β
∑

ωt+1∈Ω

W (gt+1 (ωt+1) |ω̂t+1) R (ωt+1, ω̂t+1|ωt, ω̂t) s (kt|ω̂t) (5)

s.t.

κt = I (p (ωt, ω̂t) , g (ωt)) =
∑
ωt∈Ω

∑
ω̂t∈Ω

p (ωt, ω̂t) log2

p (ωt, ω̂t)

g (ωt)
(6)

gt+1 (ωt+1) =
∑

ω̂t+1∈Ω

∑
ωt∈Ω

R (ωt+1, ω̂t+1|ωt, ω̂t)� p (ωt, ω̂t)

=
∑
ωt∈Ω

(P (ωt+1|ωt)h (ωt))�
∑

ω̂t+1∈Ω

f (ω̂t+1|ωt+1) (7)

p (ωt, ω̂t) ≥ 0
∑
ωt

∑
ω̂t

p (ωt, ω̂t) = 1, ∀t (8)

The value function in (5) takes up as argument the distribution of the prior g (ωt) in t. The vari-

able p (ωt, ω̂t) is chosen to maximize the current expected value V (ωt|ω̂t) as well as the discounted

continuation value W (gt+1 (ωt+1) |ω̂t) both conditional on having observed ω̂t. The continuation

value depends on the state one period ahead, gt+1 (ωt+1) . We assume that the discount factor is

bounded: β ∈ [0, 1).

The cost of processing information is denoted by C (κt) which is an increasing convex function

of the information processing capacity, κt, whose functional form is described in (6). Note that the
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DM’s information-processing capacity, κt, may change as t unfolds. The interpretation of capacity

that varies with t is that people may choose to vary their information-processing needs as their

experience progresses according to the environment they face. For instance, a choice that involves

a large sum of money may call for bigger attention effort than a choice where modest amount of

money is involved.

The law of motion of the state variable in equation (7) is derived using Bayesian conditioning by

convoluting the transition function R (ωt+1, ω̂t+1|ωt, ω̂t) with the choice made by the DM, p (ωt, ω̂t).

The symbol “�” denotes such a convolution. Equations (8) describe the consistency requirement

that the distribution chosen is a proper distribution.

The system (5)-(8) fully characterizes the dynamic problem of the DM. We now turn to estab-

lishing the properties of this dynamic problem and deriving testable predictions from it.

2.2.1 Properties of the Bellman program

The purpose of this subsection is twofold. First, it establishes existence and uniqueness of a solution

to the system (5)-(8) and properties of the solution. Then, it derives the dynamic behavior of beliefs.

First, note that all the constraints are concave. In fact, all the constraints but (6) are linear

in p (ω, ω̂) and g (ω). For (6), the concavity of the problem with respect to p (ω, ω̂) and g (ω) are

guaranteed by Theorem (16.1.6) of Thomas and Cover (1991).

Next, we prove convexity of the value function and the fact that the value iteration is a con-

traction mapping. The following theorem provides the desired result. All proofs are in Appendix

2.

Theorem 1 For the system (5)-(8), value recursion H and two given value functions V and U , it

holds that

||HV −HU || ≤ β ||V − U || ,

with 0 ≤ β < 1 and ||.|| the supreme norm. That is, the value recursion H is a contraction mapping.

Proof. See Appendix 2.

The theorem can be explained as follows. The space of value functions defines a vector space

which is closed under addition and scalar scaling and the contraction property ensures this space

to be complete, in the sense that all Cauchy sequences have a limit in this space. The space of

value functions together with the supreme norm form a Banach space and the Banach fixed-point
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theorem ensures (a) the existence of a single fixed point and (b) that the value recursion always

converges to this fixed point (see Theorem 6 of Alvarez and Stockey, 1998 and Theorem 6.2.3 of

Puterman, 1994).

The following theorem shows the convexity of the value function in the program (5)-(8):

Theorem 2 If the utility is bounded and if p (ω, ω̂) satisfies (6)-(8) then the recursion (5) is convex.

Proof. See Appendix 2.

The proof of Theorem 2 shows that the recursion for the program (5)-(8) is convex and can be

represented as a set of |Ω| −dimensional hyperplanes. In the proof, the convex property is given by

the fact that the n−step value function Wn (g) is defined as the supreme of a set of convex (linear)

functions and thus, obtains a convex function as a result. The optimal value function W∗ (g) is the

limit for n that goes to infinity and, since all Wn (g) are convex functions so is W∗ (g) .

2.2.2 Long-run Behavior

We now establish the dynamic behavior of the Markovian processes governing the state variable by

showing the convergence of the distribution h (ωt) =
∑
ω̂t
p (ωt, ω̂t) to g (ω) where ḡ (ω) is defined

as the limiting distribution of the prior g (ωt). We shall proceed in three steps. First we show that

the transition matrix R (:) = R (ωt+1, ω̂t+1|ωt, ω̂t) converges to P , P = P (ωt+1|ωt) and its unique

invariant distribution h (ω) → ḡ (ω). Second, we show that the distance (6) decreases over time.

These results help us with generating testable predictions for the dynamic behavior of the DM.

The first task is concerned with the long-run behavior of the transition matrixes. Let p0 =

p (ω0, ω̂0) be the distribution over Ω from which the initial values (ω0, ω̂0) are drawn and let (ωt, ω̂t)

be a Markov chain (Ω, p0, R) and define Pr (ωt+l = z, ω̂t+l = x|ωt = i, ω̂t = y) =
(
Rl
)

(z,x,i,y)
as an

element of the matrix R to the power of l. The following result applies:

Lemma 1 The transition function 1
T

∑T−1
t=0 Rt converges as T →∞ to the transition function

P .

Proof. See Appendix 2.

This result shows that the variable R, which captures the dynamic beliefs of the DM about the

transition process, converges to the true transition process, P . We use the lemma to prove the

following:
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Lemma 2 There exists an invariant distribution. Moreover, any row of P is an invariant

distribution and any invariant distribution is a convex combination of P.

Proof. See Appendix 2.

We are still left with the case where multiple invariant distributions may occur. The following

lemma establishes the existence of a unique ergodic set for P .

Lemma 3 There exists a unique ergodic set in Ω, E, for the transition function P.

Proof. See Appendix 2

Applying theorem 11.2 of Stockey, Lucas and Prescott leads us to conclude that, given Lemma

3, R has a unique invariant distribution given by ḡ (ω) . From the previous results, we can state the

following result:

Theorem 3 The asymptotic distribution of h (ω) =
∑
ω̂ p (ω, ω̂) converges to ḡ (ω).

Proof. See Appendix 2.

Next, we turn to the limiting dynamic behavior of (6). The following theorem shows that (6)

decreases over time

Theorem 4 Let p (ωt, ω̂t) and g (ωt) be two probability distributions of a finite state Markov

chain at time t. Then d (p (ω̂t, ωt) ||g (ωt)) is monotonically decreasing. Moreover, the limit of this

distance is positive:

lim
t→∞

(d (p (ω̂t, ωt) ||g (ωt))) > 0.

Proof. See Appendix 2.

The implication of this theorem is that a decrease of information occurs as statistical equilibrium

is approached. However, the distance between the two distributions does not vanish.

The results in this section make it possible to derive a static version of our problem as a special

case of the dynamic program in (5)-(8). This version is expecially useful if one wishes to compare

our model to the ones proposed in the literature. In fact, statistical models typically lack a dynamic

dimension. As a result, these theories are silent on how people use their knowledge to sharpen future

decisions as well as on the effect their choice of information has on current and future expected

gains.
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While the dynamic implications of the model constitute the thrust of this paper, before turning

to the empirical results, we shall briefly discuss the static version of the model in order to ease the

comparison between our rational inattention theory and the models in the literature.

2.3 A static version of the model

Studying the properties of a static version of our rational inattention model allows us to compare

the solution of the decision maker’s problem with existing static probabilistic choice models in the

literature. Our static version of the problem is a special case of the dynamic program (5)-(8) when

the process ωt ∈ Ω is zero-order Markov and when convergence to the stationary distribution ḡ (ω)

has been achieved.

As time progresses, the continuation value in the dynamic problem will eventually stop depend-

ing on previous period’s realizations and the prior carried over will be the same ever since. As a

result, in the static version of the model the choice variable becomes p (ω) = p (q, k) and the model

can be cast into:

max
p(q,k)

∑
k∈Ωk

V (q, k) s (k)− C (κ) (9)

s.t.

κ = I (p (q, k) , ḡ (q, k)) =
∑
q∈Ωq

∑
k∈Ωk

p (q, k) log2

p (q, k)

ḡ (q, k)
(10)

p (q, k) ≥ 0,
∑
q∈Ωq

∑
k∈Ωk

p (q, k) = 1 (11)

where s (k) =
∑
q∈Ωq

p (q, k) in the objective function (9) represents the DM’s chosen choice proba-

bility, observable in our experiment. As before, equation (10) is the mutual information between the

distributions (p (q, k) , g (q, k)) and the constraint (11) limits the choice of the decision maker to the

space of proper distributions. As in Section 2.1, let g0 (k) =
∑
q∈Ωq

ḡ (q, k) denote the assymptotic

prior distribution over the gambles and let s (k) denote the choice of the decision-maker. Moreover

recall that I (p (q, k) , g (q, k)) = I (s (k) ; g0 (k)) .

The following theorem characterizes the optimal solution to the decision-maker’s problem in a

static environment:
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Theorem 5 If the cost of information, C (κ), is a differentiable increasing convex function of

the amount of information, then the optimal choice probabilities are given by:

s (k) =
g0 (k) exp

(
V (k)
θ/ ln 2

)
∑
k̃∈Ωk

g0

(
k̃
)

exp

(
V (k̃)
θ/ ln 2

) . (12)

where θ = ∂C(κ)
∂I(s(k);g0(k)) is the derivative of the cost function with respect to the amount of informa-

tion, evaluated at the chosen amount of information.

Proof. See Appendix 2.

For the case where the cost function is linear, this result is a generalization of the choice model

of Luce (1959). To see this, assume no prior bias regarding the gambles,9 suppose that K = 2 and

the two gambles considered are labeled A and B. Then the formula reduces to:

s (A) =
1

1 + exp
(
V (B)−V (A)

θ/ ln 2

) . (13)

However, our result is more general, since it can account for the DM’s prior bias towards one

option over the other stemming from the way options are presented. This bias is determined by the

transition functions of questions and answers, as well as the DM’s dynamic choices over the course of

the experiment. Our model provides an additional source of generality. As we shall discuss in detail

later, by varying the cost function, C (κ), we can replicate as special cases the error distributions

generated by most other probabilistic choice models used in the literature.

More importantly, our theory provides a rationalization to probabilistic choice models. Note that

the structural forms (12) and (13) are derived from first principles. Intuitively, rational inattention

theory predicts that the DM should flip a biased coin when making her choice. The bias of the coin

is endogenous. It depends on the trade-off between the marginal benefit of being more attentive and

the marginal cost of processing more information, captured by the expression θ = ∂C(I(s(k);g0(k)))
∂I(s(k);g0(k)) .

This transforms the parameter θ, interpreted as curvature of the error distribution in most existing

models, into a preference parameter which characterizes the DM’s costs of processing information.

In the empirical part of the paper we estimate the parameters of the cost function, C (κ).

9That is, assume that {gk0} is uniform and equals
{

1
K

}
.
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2.4 Testable Predictions

2.4.1 Static Implications

The theory we laid out in this section delivers the following predictions from the static version of

the model:

Static prediction 1. Probabilistic Behavior. The key static prediction of the rational inattention

model is that the DM behaves probabilistically. If information processing is costly, then even

in the stationary distribution, after convergence has been achieved, the DM’s behavior will

remain probabilistic.

Static prediction 2. Errors occur more often when stakes are lower. The shape of the error

distribution depends on the properties of the DM’s ability to adjust the amount of information

being processed. If the DM faces a capacity threshold, then the probability of making an

erroneous choice would be constant, independent of the options. In contrast, if the DM can

choose how much information to process by putting varying degrees of effort, then she would

respond to incentives. If the DM perceives that the difference between the options is so small

that it is not worth it to pay close attention, then the DM will not have a strong preference

between the two options and choose randomly. The more she cares about one option over

another, the more frequently she will choose the preferred option.

2.4.2 Dynamic Implications

In contrast to other probabilistic choice theories, our rational inattention model is capable of making

dynamic predictions regarding choice accuracy in experiments with repeated choices. The key

theoretical prediction of our dynamic model is that the DM learns over the course of the experiment

about the properties of the true transition process of the state variable as well as about its stationary

distribution. In fact, from lemma 1 we know that the beliefs about the transition process, R (:) =

R (ωt+1, ω̂t+1|ωt, ω̂t), converge to the true transition process, P = P (ωt+1|ωt). Theorem 3 shows

that beliefs about the state variable, h (ω), converge to the true stationary distribution ḡ (ω), which

we know to be uniform in our experimental setup. We use this fact together with the first-order

conditions in (12) to simulate the model starting from different priors g (ωt) converging to ḡ (ω).

Using Monte-Carlo simulations, we show in section 4.2 that this predicted behavior of beliefs
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maps uniquely into the dynamic behavior of rolling-window estimates of costs of information. In

particular, if beliefs converge monotonically from some initial beliefes towards a uniform distribu-

tion, then the cost estimates decline over the course of the experiment converging to the true value

of costs in the limit.

Dynamic prediction 1. Acquaintance of the DM with the experimental setup lowers our estimates

of her costs of information. In particular, if the DM faces two identical experimental sessions,

our estimates of her costs of information should be lower in the second session compared to

the first session. This is because knowledge of the statistical properties of the experimental

setup acquired in the first session affects the prior with which the DM enters the second

session. This acquired knowledge should make her decisions sharper and more consistent in

the second session.

Dynamic prediction 2. As the experiment unfolds, people make monotonically sharper and more

consistent choices. This dynamic prediction involves the behavior of the DM within the same

experimental session. The estimate of costs of information should monotonically decrease

within an experimental session, while the consistency of choices should monotonically increase.

This is because the dynamic process of updating the prior via Bayes’ rule, predicted by our

model, implies monotone convergence of the prior towards the uniform stationary distribution.

2.4.3 Heterogeneity and Aggregation Bias

The literature on both behavioral choice and the macroeconomic literature often study combined

choices of all participants of an experiment or market and treated them as if coming from a sin-

gle “representative” decision-maker. The macroeconomic literature often refers to this fictional

decision-maker as the “representative agent”. This concept is different from the average participant

of the experiment, i.e. the participant with average values of all deep parameters characterizing her

behavior. We call the difference between the properties of choices of the average participant of the

experiment and the representative agent an “aggregation bias”.

The experimental data allow us to investigate the direction of the aggregation bias in our

sample of participants. To this end, suppose that participants differ only in their cost of processing

information, θi. Then, the following theorem provides a testable prediction on the direction of the

aggregation bias:
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Theorem 6 When agents differ in their cost of information θi, the inverse cost of information

of the representative agent is always biased downwards compared to the average across inverse costs

of information of individual agents:

1

θRA
<

1

N

N∑
i=1

1

θi
.

Proof. See Appendix 2.

The key implication of Theorem 6 is that we should expect aggregate behavior to appear as if

produced by a more inattentive representative agent compared to the average individual. Thus, we

should expect to encounter more inattentive behavior in the aggregate than in the laboratory.

3 Methodology

3.1 Experimental Setup

In order to assess the relevance of the cost of information and compare the models described in

the previous section, we use experimental data collected in Michel Regenwetter’s laboratory at

the University of Illinois at Urbana Champain in the summer of 2009. The main property of the

experimental setup useful to us is that each participant was asked the same question repeatedly a

large number of times. The collected experimental data contains observed frequencies with which

each subject chose from each pair of gambles as well as the sequences of questions and answers.

This data allows us to test predictions of rational inattention theory at the individual level.

Experimental data available to us contains answers of N individuals who were repeatedly asked

to compare M pairs of gambles. Each individual faced each gamble L times. The M×L overall

gambles per individual were shuffled to make sure that the experiment is not plagued by memory

effects. The experiment was conducted in a laboratory space at the University of Illinois at Urbana-

Champaign. Forty individuals participated in the study, split roughly half-half by gender and all

approximately of college-age. The experiment was conducted over two sessions, separated by at

least four days for each participant. Each session was not restricted in time and took roughly one

hour to complete. At the beginning of each session a clear description was given of what to expect

from the experiment and several practice gambles were played. The participants were also warned

that each pair of gambles could be selected at the end of the session to be played for real, making

clear that their choice in each pair of gambles could affect their final payoff.
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Table 1: Gamble Payoffs and Probabilities

N o
− X1, $ pX X2, $ Y1, $ pY Y2, $

1 29.38 0.65 1.19 18.00 0.68 3.21

2 27.98 0.42 18.89 25.44 0.47 3.90

3 26.44 0.52 1.92 26.03 0.34 5.77

4 25.05 0.24 24.01 25.32 0.66 10.56

5 23.64 0.71 10.78 25.03 0.98 6.86

6 20.76 0.80 11.61 12.42 0.93 8.14

7 19.38 0.23 2.46 12.57 0.96 0.73

8 18.02 0.39 4.97 15.01 0.49 14.26

9 16.66 0.60 9.03 16.32 0.19 10.87

10 19.58 0.48 15.17 26.39 0.45 10.07

11 13.88 0.41 5.05 8.91 0.70 8.67

12 29.83 0.38 12.47 25.10 0.85 22.74

13 21.78 0.72 11.16 21.30 0.66 20.91

14 9.61 0.17 6.49 9.87 0.31 4.17

15 16.11 0.20 8.10 22.75 0.13 6.18

16 6.88 0.53 6.69 13.86 0.90 0.96

17 24.08 0.90 5.02 23.74 0.07 14.41

18 18.56 0.99 1.70 27.68 0.97 2.16

19 22.51 0.88 0.00 19.30 0.71 0.73

20 22.57 0.70 0.12 11.53 0.79 2.81
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Each question contained two gambles, A and B, with parameters {X1, pX , X2, 1 − pX} and

{Y1, pY , Y2, 1− pY }.10 Gambles were randomly uniformly drawn from the whole domain of potential

gambles following the procedure proposed by Rieskamp (2008).

One advantage of this procedure is that it does not favor any particular theory by construction.

Thus, the gamble space generates no a priori bias to the estimates of the parameters.11 Second,

this gamble selection procedure guarantees that costs associated with coding information about

the gambles to be processed are roughly the same for all gambles. This puts all choices on equal

grounds and eliminates any bias associated with the possibility of inefficient coding.

Outcomes of the gambles were selected from a uniform distribution over [0,30] in 0.01 increments.

Probabilities were selected from a uniform distribution over [0,1] in 0.01 increments. About 59% of

these gambles were screened because either one gamble showed first-order stochastic dominance over

the other or one gamble had at least double the expected value of the other. 20 pairs were randomly

selected from the remaining gambles. Table 1 presents the gambles used in the experiment.

Participants were presented with a sequence of gamble pairs, one pair at a time. Probabilities

were displayed in the form of pie charts. Participants could choose only one gamble from each pair.

Gamble pairs were ordered by the computer quasi-randomly, i.e. drawn from a uniform distribution,

with the condition that the same pair was never presented twice in succession. Over the course

of a session, each gamble pair was presented 30 times, so participants made 600 choices in each

of the two sessions. At the end of each session, one gamble out of 600 chosen by the participant

was randomly selected by the computer and played for real. The outcome of the chosen gamble

was paid to the participant together with a $5 flat payment. The average payment was $20.97 per

session.

3.2 Decision Theories

Our theory of rational inattention complements decision theory, which determines valuations of

choice options V (k) depending on the payoffs Xkj and their objective probabilities, pkj . In this

paper we estimate individual information cost functions considering several decision theories for two-

10In the dataset N = 40,M = 20, L = 60.
11This setup is important. For instance, consider the classical Experiment I from Tversky (1969). The gambles

for that experiment were selected in a subspace of all gambles which have almost the same expected payoff. Using

such a set of gambles in our experimental setup would give us no ability to identify parameters characterizing costs

of information.
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branch gambles. We follow the literature in assuming that individual valuations of sure outcomes

are given by the utility function with constant relative risk aversion:

U (X) = α
X1−γ

1− γ
, (14)

where α is a positive constant, γ ∈ R represents risk-aversion of the decision-maker.12

Most existing decision theories, when applied to our setup, can be expressed as particular forms

of the rank-dependent utility (RDU) model, develped by Quiggin (1982). RDU models commonly

assume that the value of an option is determined as a weighted sum of utilities of payoffs:

V (k) =

J∑
j=1

wj (pkj)U (Xkj) , (15)

but vary in their probability weighting function, wj (p). In the case of two-branch gambles, rank-

dependence shows itself in the assumption that the weight w (p) corresponds to the branch with a

higher payoff, while the weight 1− w (p) is attached to the lower payoff.

Prominent special cases include expected utility (EU) theory of von Neumann and Morgenstern

(1944), where the weights are equal to objective probabilities, cumulative prospect theory (CPT)

of Tversky and Kahneman (1992), transfer of attention exchange (TAX) model of Birnbaum and

Chavez (1997). Table 2 describes the various functional forms for the weighting function adopted

in the literature. To allow for the possibility of each of these functional forms simultaneously, we

extend Wilcox’s (2010) beta weighting function by attaching a scale parameter to it. In our analysis,

we adopt the following generalized beta weighting function:

w (p) = min

{
δ

´ p
0

(x)
φ−1

(1− x)
η−1

dx´ 1

0
(x)

φ−1
(1− x)

η−1
dx
, 1

}
, (16)

where behavioral parameters φ, η and δ take positive values. Our specification boils down to

expected utility when φ = η = δ = 1. Also, when γ = 0 agents are risk-neutral.

Although we are unaware of closed-form expressions converting parameters of other decision

theories into these parameters, it is possible to find a parameter combination for the generalized

beta function which represents each of these decision theories with a high degree of accuracy.

However, our functional form is more general: under many parameter values none of the existing

decision theories can approximate choices implied by our specification.

12We also tried a more general specification of utility used by Holt and Laury (2002) which adds global absolute

risk aversion to the utility function. We found that this specification does not improve the fit of the model.
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Table 2: Weighting Function in RDU

Decision Theory Weighting Function

EU, Von Neumann, Morgenstern (1944) w (p) = p

Karmarkar (1979) w(p)
1−w(p) =

(
p

1−p

)φ (
δ

1−δ

)1−φ

Kumaraswamy (1980) w (p) = 1−
(
1− pδ

)φ
CPT, Tversky, Kahneman (1992) w (p) = pφ

(pφ+(1−p)φ)
1
φ

Goldstein, Einhorn (1987)

Lattimore, Baker, Witte (1992)
w (p) = δpφ

δpφ+(1−p)φ

Wu, Gonzalez (1996) w (p) = pφ

(pφ+(1−p)φ)
δ

TAX, Birnbaum, Chavez (1997) w (p) = δpφ

pφ+(1−p)φ

Prelec (1998) w (p) = exp
(
−δ (− ln p)

φ
)

Wilcox (2010) w (p) = B (p, φ, η) /B (φ, η)

Generalized Beta w (p) = [δB (p, φ, η) /B (φ, η)]
1
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3.3 Probabilistic Choice Models and Information Costs

Most empirical studies of choice under risk attribute observed deviations from behavior implied by

a decision theory to random errors made by individuals. Probabilistic choice models take various

functional forms linking the choice probability, s (z), to the value differential, z, between an option

and its alternative. The value differential comes directly from the decision theory.

Three major shapes of the probabilistic choice function are commonly used. First, Fechner

(1860)’s model of random errors used in Hey and Orme (1994) makes use of a Gaussian cumulative

density function (probit). Second, Luce (1959)’s choice model used by Holt and Laury (2002) implies

a logistic curve. Third, the “tremble” model of Harless and Camerer (1994) sets the probability of

a misstep to a constant, τ . There are a number of generalizations building on these three models

which we describe in Table 3.

Note that all of these models are symmetric with respect to positive and negative values of the

value differential. The left panel of Figure 3.3 demonstrates that all of these shapes can be well

captured by a combination of two factors. The first factor is the slope of the function as it passes

through the point of indifference. The second factor is the asymptotic probability of a misstep,

when one choice option strongly dominates another.

Both of these factors have an intuitive interpretation in our rational inattention (RI) model.

Recall that our RI model with a constant marginal cost of information, θ, reproduces the logit

specification of Luce (1959). Thus, the RI model interprets the slope factor as the marginal cost of

information, when the cost function is linear.

Now consider the other, more common, assumption made in the inattention literature where

agents face a fixed capacity constraint, κ. In this case the cost of information is zero for all values

below κ, but becomes vertical exactly at κ. In this case, the RI model predicts choice probabilities

identical to the tremble model. Thus, the RI model interprets a constant misstep probability as

evidence of a capacity constraint on information processing.

To capture both of these factors as well as all their combinations, we adopt a flexible specification

for the information cost function. We assume the following functional form:

C ′ (x) = θπ/ arccot

(
x− κ
ρ

)
, (17)

where the cost of information, θ, is non-negative, the capacity constraint, κ, takes values in the
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Table 3: Functional Representation of Probabilistic Choice Models

Model Formula Cost Function

Fechner/Probit s (z) = F
(
z
σ

)
θ ≈ .41σ κ = 1

Luce/Logit s (z) = Λ (λz) θ = 1/λ κ = 1

Tremble s (z) =
(

1
2 + 2τ−1

2 sgn (z)
)

θ = 0 κ = I (τ)

Truncated Fechner s (z) = F
(
[z]

z0
−z0 /σ

)
θ ≈ .41σ κ = I

(
F
(
− z0σ

))
Hetero. Fechner s (z) = F

(
z/eλ|z|

)
θ ≈ .41σ κ < 1

Contextual Utility s (z) = Λ
(
λz/

(
u
(
X
)
− u (X)

))
θ = 1/λ κ = 1

Decision Field Theory s (z) = Λ
(
λz/

√
V ar (z)

)
θ = 1/λ κ = 1

Rational Inattention s (z) = Λ
(

z
C′(I(s(z)))

)
C ′ (x) = θπ/ arccot

(
x−κ
ρ

)

unit interval, and the curvature parameter, ρ, takes a value much higher than 1.13

The right panel of Figure 3.3 illustrates the properties of this cost function and compares it to

cost functions implied by other probabilistic choice models. Note that all of the existing models

can be well approximated by a combination of a constant marginal cost, θ, turning into a capacity

constraint, κ. Table 3 reports the corresponding values of these two parameters for other choice

models in the literature. Note that the additional factors introduced by the Contextual Utility (CU)

model of Wilcox (2011) as well as the Decision Field Theory (DFT) of Busemeyer and Townsend

(1993) can be interpreted as distortions of the probability weighting function, while the implied

probability curve remains logit.14

In order to convert the cost of information θ from utils per bit to dollars per bit we use the

13In our estimation we set ρ = 600. This value is high enough to capture the transition, while maximum likelihood

estimation tends to set this value even higher.
14Although these distortions are well-specified for our experimental setup, they are hard to map directly into

weighting functions. Our hope is that our generalized beta weighting function is flexible enough to meaningfully

capture these distortions for our specific gamble set.
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Figure 1: Error Models and Corresponding Cost Functions

conversion factor:
∑
k∈Ωk

g0 (k) ∂V (k)
∂Xk

for each gamble. This conversion factor makes the parameter

α irrelevant, as it scales both the utility function and the cost of information. This is consistent

with intuition, as the individual scale of utility affects the absolute cost of information in utils per

bit, but does not affect the relative cost measured in dollars per bit. Thus, we have four param-

eters, {γ, φ, η, δ}, which fully capture most existing decision theories, and two parameters of the

generalized cost function, {θ, κ}, which summarize the DM’s limited ability to process information.

3.4 Static model as an empirical tool

Our model predicts that the DM should behave probabilistically and that her choice probabilities

may evolve over time, eventually converging to a stationary distribution. Our model has closed-

form predictions for this stationary distribution of choices, represented by the static model. Using

the predictions of the static model, it is possible to use experimental data to uncover all of the

DM’s deep parameters.

However, it is much harder to find the mapping between these deep parameters and the dynamic

changes in behavior before convergence is achieved. This is because the DM may start the experi-

ment with different priors, and the DM’s observed choices are not sufficient to make inferences about

this prior. Finally, it is hard to know the speed of convergence to the stationary distribution ex

ante without knowing all the deep parameters and the prior. We can only hope that 60 repetitions
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of each question are enough for convergence to be achieved by the end of the experiment.

For this reason, we do not attempt to estimate the dynamic model. Instead, we use the static

model as an empirical tool. While precise in the limit, the static model serves as a good approxima-

tion of the DM’s behavior before convergence has been achieved. Our inference proceeds in three

steps.

In the first step, we apply the static model to the whole dataset as if the DM starts in the

stationary distribution. The estimates of parameters of the DM’s decision theory obtained this

way should be close to the true parameters, because the decision theory determines the ordering of

options, which remains unchanged over the course of the experiment.

Because more information capacity is diverted towards learning about the environment at early

stages of the experiment, our estimates of the cost function give an upper bound on the costs of

processing information rather than a precise estimate.

In a second step, we use the static model to estimate cost parameters separately for the two

sessions, while keeping the parameters of the decision theory constant across sessions for each

participant. Then, we can test whether and how the parameters characterizing costs of processing

information change between two sessions. This estimation procedure allows us to get a better

estimate of the cost function once convergence has been achieved, to test whether there is a difference

in estimates between the two sessions and check whether this difference is consistent with predictions

of our theory.

In a third step, we fix the parameters of the decision theory for each participant and run a

rolling-window estimation of the cost function. This procedure allows us to get a good idea about

whether convergence has been achieved, the speed of convergence and its direction.

Note, that the design of the experiment implies a uniform transition function for answers, so that

the probability of seeing any option on the left side of the computer screen equals the probability

of seeing it on the right side. This experimental design eliminates any prior bias with respect to

answers in the stationary distribution and validates the use of a uniform prior when estimating

the static model. Thus, in the empirical part we can also abstract from concerns associated with

possibly inefficient coding of information by participants of the experiment and its effect on the

prior.
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3.5 Estimation of Parameters

The experimental data allows us to estimate jointly the values of all six parameters {θ, κ, γ, φ, η, δ}

for each of N individuals, or any subset of parameters for any restricted version of the theory.

The likelihood function of the data is the density of a binomial distribution where sa,i denotes the

binomial choice probability of participant a on question i. The log likelihood of option A being

chosen x times and option B being chosen y times given the deep parameters ωa = {θ, κ, γ, φ, η, δ}

and parameters of the question ζi = {X1, X2, pX , Y1, Y2, pY } is given by

logL (x, y|ω, ζ) = log

(
y

x+ y

)
+ x log sa,i (ω, ζ) + y log (1− sa,i (ω, ζ)) . (18)

The choice probability, sa,i (ωa, ζi), can be computed by solving numerically the equation:

sa,i (ωa, ζi) =
1

1 + exp
(
− V (A)−V (B)
C′(I(sa,i)|ωa)/ ln 2

) , (19)

where C ′ (I|ωa) is the marginal cost function of participant a defined in (17), and I (sa,i) denotes

the amount of information implied by the choice probability sa,i:

I (sa,i) = sa,i log2 sa,i + (1− sa,i) log2 (1− sa,i) + 1. (20)

Because our specification of the marginal cost function is convex, Theorem 5 implies that the

solution of equation (19) is unique. We use this specification to estimate ωa by maximizing the sum

of log likelihoods of choices made by participant a defined as:

Λa =

M∑
i=1

logL (xi, yi|ωa, ζi) . (21)

To evaluate model fit it is also useful to compute the likelihood of an “unrestricted” model

which allows for individual parameters sa,i for each question i for each participant a. This model

has as many parameters as data points. Estimates of parameters of this model will be equal to the

observed probabilities, i.e. sa,i = x
x+y .

To compare models we sum up individual likelihoods, and then penalize the joint likelihood for

over-parameterization using the Bayes Information Criterion (BIC):

BIC = −2

N∑
a=1

Λa + n lnO, (22)

where n is the total number of estimated parameters, and O is the total number of observations.
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To compare nested model specifications, where we allow participants to change a subset of pa-

rameters across two sessions, we use the likelihood ratio test which follows a chi-squared distribution

with the number of restrictions, r, determining degrees of freedom:

LR = −2
(
ΛRa − ΛUa

)
∼ χ2 (r) . (23)

4 Results

We start by describing static estimates of the parameters of cost functions. We use these estimates to

study the properties of the cost functions to identify participants which face information processing

capacity constraints. We describe the amount of heterogeneity in cost functions and measure the

size of the aggregation bias. We discuss in detail the estimates of parameters of decision theories,

concluding that there are large variations in these estimates as well.

Then we move to testing the first dynamic prediction of our model, namely, that if participants

acquire information about the experimental environment, then their estimated costs of information

should fall between the two sessions. Finally, we study the speed of convergence to the stationary

distribution of attention over the course of the experiment by running rolling-window estimates of

costs of information.

4.1 Static Estimates

The first three columns of each panel in Table 4 report the estimates of parameters of the marginal

cost function for all 40 participants of the experiment. For each participant we report the inverse

of the estimated value of the marginal cost of information, 1/θ̂, measured in bits per cent, and the

estimated value of the capacity constraint, κ̂, in bits.

As the first observation, we note that variations in the estimates of the the capacity constraint

are not particularly large across individuals; most estimates are indistinguishable from 1. The fourth

column of each panel in Table 4 reports the likelihood ratio test statistic for the hypothesis that

the capacity constraint is absent, i.e. H0 : κ = 1. Each test statistic has a chi-squared distribution

with 1 degree of freedom. However, rejecting the null is not sufficient to conclude that a participant

has a capacity constraint. We need to check two additional conditions.

First, we need to verify that the estimated value of the capacity is sufficiently below 1 to be
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meaningful. Note that if a participant accidentally made a single misstep while answering the

remaining 59 repetitions of the question in line with her decision theory, we would conclude that

she processed I (59/60) = 0.877 bits per question. Hence, any κ > 0.877 is indistinguishable from

having no capacity constraint and answering all 60 questions consistently.

Second, we need to verify that the estimated value of κ is achieved at least theoretically in a

few questions in our experiment. The low estimate of the capacity and the rejection of the null

may be driven by the restrictions we place on the functional form of the cost function, rather than

evidence of the presence of a capacity constraint.

In Table 4, we mark with an † sign the participants with a capacity constraint, which we

identified by checking three criteria: 1) their likelihood ratio is above the critical value of 5.0; 2)

their estimated capacity is below 0.877; and 3) their capacity constraint is achieved for at least 3

questions in our sample. We find that 12 out of 40 participants of our experiment satisfy these

conditions. Although these conditions might sound stringent at first glance, relaxing any one of the

two additional requirements does not add more than a couple participants to the list.

The first conclusion that we draw from our estimates is that the number of participants with

a capacity constraint does not exceed one third. This implies that the majority of participants

responds to incentives by making more consistent choices when stakes are higher. Even those

participants for whom we identify a capacity constraint have a positive cost associated with lower

values of capacity. This implies that all participants respond to incentives for a large interval of

value differentials. Only when stakes are especially large does the capacity constraint prevent some

participants from further increasing the precision of their choices.

One observation we make is that the estimates of marginal costs of information differ by more

than an order of magnitude across participants of the experiment. Even after removing clear

outliers, the set of estimates covers the whole range between 1.8 bit per cent and 25 bits per cent.

This finding together with theorem 6 suggest that we should expect to see some aggregation bias

in the estimates for the representative agent.

The cost estimates for the “representative agent” (RA), i.e. from treating the combined set of

choices of all 40 participants as if coming from a single decision-maker, are reported at the bottom

of Table 4. We find that the RA’s marginal cost of information is 4.7 bits per cent, and that she has

a capacity constraint of 0.73 bits. These estimates are in sharp contrast with the mean of individual

costs of 15.3 bits per cent (median of 8.9) and the mean capacity constraint of 0.85 bits (median
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Table 4: Fixed capacity vs. fixed costs

N o
− 1/θ̂ κ̂ LR LRθ LRκ N o

− 1/θ̂ κ̂ LR LRθ LRκ

1 16 .88 31 9.0§ 9.6§ 21 3.5 .47 8.6† 0.8 12§

2 1.8 .22 36† 0 1.3 22 5.0 .58 27† 5.3§ 20§

3 5.9 .93 7.4 14♣ 3.5 23 11 .88 9.7 38§ 11§

4 7.6 1 0.4 0.3 0 24 5.4 .71 23† 34♣ 25♣

5 25 1 0 18§ 0 25 3.9 .32 40† 65♣ 150♣

6 16 1 0.3 0.1 0 26 9.5 1 0.3 44§ 0

7 12 1 0.2 0 0 27 6.5 .91 4.5 19§ 5.0§

8 5.1 .95 1.1 7.7§ 1.5 28 6.9 .83 30† 48§ 24§

9 8.9 .93 18 0.3 2.5 29 14 1 0.1 9.6§ 0

10 10 .44 65† 12§ 0.6 30 6.8 .91 9.3 0.3 0.1

11 8.9 1 0.4 0 0 31 9.1 .74 22† 5.8§ 1.6

12 51 .89 102 21 5.8 32 9.4 .75 22† 46§ 11§

13 10 .75 36† 0.3 3.0 33 10 1 0.4 0 0

14 4.4 .43 62† 2.6 0 34 38 .95 47 68§ 10§

15 3.4k .49 169 0 62§ 35 18 .91 11 0.6 0

16 11 .90 28 0.1 1.0 36 8.8 .69 29† 4.9 24§

17 5.8 .63 24 21§ 0.8 37 10 1 0.2 22♣ 0

18 6.9 .92 0.9 0 6.3§ 38 7.0 1 0.5 0 0

19 566 .94 40 0 0 39 8.1 1 0.2 11§ 0

20 8.8 .96 5.7 129§ 5.5§ 40 5.9 1 0.4 4.6§ 0

RA 4.7 .73 443† 114§ 0.1

-No
−participants, 1/θ̂ -inverse of the estimated marginal cost of information in bits per cents, κ̂ estimated capacity in

bits, LR - Likehood ratio test; LRθ -LR test for the hypothesis that costs are equal across the two sections, LRκ - LR test

for the hypothesis that capacities are equal across the two sections. RA -representative agent, † - capacity constraint

present (12 participants), § - lower information cost in second session (21 participant), ♣ - higher information cost in

second session (4 participants). Likelihood ratio test statistics are distributed as χ2(1). The critical values for this test

are 3.8 at 5%, 5.0 at 2.5% and 6.6 at 1%. k means 10
3
.
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Table 5: Estimates of parameters of decision theories

N o
− γ̂ φ̂ δ̂ η̂ N o

− γ̂ φ̂ δ̂ η̂

1 0.62 5.57 4.78 0.85 21 -1.96 2.71 2.11 1.00

2 -2.27 3.81 2.88 1.83 22 0.42 0.68 1.49 0.89

3 -1.22 3.01 2.37 0.54 23 0.29 0.56 2.10 0.66

4 -0.63 0.44 0.41 0.70 24 -0.94 0.43 0.33 0.90

5 0.56 1.62 1.57 0.62 25 -1.68 4.02 3.72 0.92

6 0.22 2.37 1.97 0.59 26 1.80 1.38 1.09 0.76

7 -0.70 0.44 0.49 1.14 27 0.17 2.85 2.13 0.58

8 -0.41 1.03 0.78 0.31 28 0.29 5.05 4.35 0.52

9 -0.83 1.58 1.63 0.89 29 0.71 1.87 1.90 0.56

10 1.50 0.14 0.86 0.57 30 -1.54 0.42 0.00 3.8k

11 -0.18 1.08 1.46 0.84 31 1.06 0.21 0.59 0.69

12 -0.14 0.33 0.00 2.3k 32 -1.79 5.16 5.01 0.62

13 1.12 0.38 0.75 0.80 33 0.73 0.14 0.10 1.40

14 -7.5 174 176 1.00 34 0.53 0.32 0.00 1.7k

15 -1.08 0.59 0.96 0.52 35 1.94 1.74 1.61 0.79

16 -0.14 0.60 1.11 0.90 36 -3.23 3.84 3.34 0.60

17 0.77 0.58 1.06 0.79 37 0.78 1.61 1.73 0.54

18 -1.64 2.02 0.88 0.56 38 -1.23 2.98 2.86 0.32

19 -0.22 0.42 0.67 0.67 39 0.52 0.55 1.19 0.83

20 0.18 1.93 1.83 1.00 40 -0.54 9.9 15.9 0.31

RA 0.11 1.10 1.16 0.70
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of 0.91). Restricting the comparison to subgroups of participants does not undermine this result in

any way.

The second conclusion we draw from the static estimates is that using combined choices of

different participants introduces a substantial aggregation bias into the estimates of the cost function

of an average individual. As predicted by theorem 6, the aggregation bias makes choices of the

representative agent much less consistent compared to choices of the average individual. The

observation that the combined choices of individuals are inconsistent can be and is often interpreted

as showing that the average participant is very inconsistent and has substantial limitations on

rationality. We show that this observation may be a consequence of aggregation bias.

Table 5 shows the estimates of parameters of decision theories for each participant over the

whole sample. The variations in the risk-aversion parameter γ̂ are quite substantial. Risk aversion

covers a wide inverval of values, from as high as +2, which is a relatively high level of risk-aversion

compared to other experimental studies,15 to as low as -2, which indicates strong risk-loving attitude.

However, there is only a mild difference between the average estimate of risk aversion of -0.39, and

the RA’s risk aversion value of 0.11.

There are similarly large variations in all the other parameter estimates. Estimates of the

curvatures of likelihood functions indicate that only a tiny fraction of variation in these parameters

across subjects can be attributed to measurement error. Most point estimates of parameters of the

decision theory have relatively small standard errors.

The best way to illustrate variations in parameters of RDU is to compare the weighting functions.

Figures 2 and 3 plot the weighting functions for two groups of participants. The first group consists

of participants for which the weighting function can be well approximated by a functional form from

the literature. The functional forms which we find to fit best are TAX (15 participants), CPT(6

participants) and Prelec (2 participants). The second group includes 17 participants who cannot

be approximated well (within 2 percent Root mean-square error, RMSE) by any existing versions

of RDU.

15The standard estimates of Holt and Laury (2002), who aggregate across subjects, are in the range of positive

0.3-0.5.
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Figure 3: Estimated Weighting Functions

not representing existing decision theories

Legend: TAX, CPT, Prelec and Beta (-Generalized Beta) correspond to the decision theory in Table 2. RA -Representative

Agent. Number of participants in parenthesis. Each line represents a participant

In addition to the generalized-beta specification of preferences, we redo the whole estimation

exercise for an expected utility model. We find that all of our results hold in the EU specification

as well: 1) the linear cost model fits most participants better than the fixed capacity model; 2)

the heterogeneity in cost and risk-aversion parameters is slightly bigger; 3) the dynamic behavior

is very similar to that estimated in section 4.2 under the RDU specification.

Table 6 compares the fit of three models based on loglikelihood (LL) and Bayesian Information

Criterion (BIC): our generalized-beta specification of rank-dependent utility (RDU), the expected

utility model (EU) and the unrestricted model (UR). Overall, the BIC for RDU is much lower than

that for EU (a lower value indicates better fit). However, the RDU specification goes only halfway

between EU and the unrestricted model. We find that 36 out of 40 participants are better described

by the RDU specification than by the EU specification, while for the other 4 participants the EU

specification is more parsimonious.

Overall, we find strong evidence in favor of the rank-dependent model for most experiment

participants. Meanwhile, the behavior of the RA is barely distinguishable from that predicted by

EU model. The weighting function of the RA can be well approximated by a straight line which

discounts each probability at a constant rate of 0.7. Recall also that we estimated the RA’s risk
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Table 6: Model fit across decision theories

Model LL n BIC

1. EU -11795 120 24884

2. RDU -7727 240 18041

3. UR -1867 800 12357

Legend: EU -Expected Utility theory, RDU -Reference-Dependent Utility theory, UR -unrestricted model, LL

-log-likelihood, BIC -Bayes’ Information Criterion.

Note: 36 out of 40 participants are better described by RDU than EU whereas for 4 participants EU is more parsimonious.

aversion parameter to be close to zero.

Heterogeneity among participants may be the main reason why it has been so hard to test

and compare models of RDU in existing studies. The differences in parameters for participants of

decision theories are so large that most of them would be attributed to noise if we pooled together

the choices of all participants.

4.2 Dynamic Estimates

We use the prediction of our dynamic model that the DM’s prior beliefs about the state variable

and the transition process are updated over the course of the experiment and converge to the true

stationary distribution and true transition process. Combining this prediction with the first-order

conditions in (12) allows us to simulate the dynamic model starting from different priors g (ωt)

which then converge to ḡ (ω). The data is not rich enough to infer the behavior of individual

beliefs. To generate testable predictions, we apply a rolling-window estimation procedure both to

artificial data generated by the model and to experimental data. Comparison of the two allows for

an indirect test of the predictions of the model.
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Figure 4: Monte-Carlo Simulations

Figure 4 illustrates the results of Monte-Carlo simulations. It shows three paths of rolling-

window estimates of the cost of information (and confidence bounds around them), which differ only

by the speed of convergence to ḡ (ω). Monte-Carlo simulations show that the predicted behavior of

beliefs maps uniquely into the dynamic behavior of rolling-window estimates of costs of information.

We find that if artificial beliefs converge monotonically from some initial values towards a uniform

distribution, then the cost estimates decline over time converging to the true value of costs in the

limit. In this case, the speed of convergence of cost estimates is directly related to the speed of

convergence of beliefs. However, if beliefs were not to converge to the uniform distribution, then

we would see no clear dynamic pattern in the behavior of estimates of costs of information. Both

predictions of the dynamic model regarding estimates across sessions and within a session follow

directly from our Monte-Carlo exercise.
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To test the first dynamic prediction, that acquaintance with the experimental setup lowers the

estimates of the cost function, we estimate the parameters of the cost functions separately for the

two sessions. For each individual, we find joint estimates of the parameters allowing either θ or κ to

differ between the two sessions, while treating the rest of the parameters as constants throughout

both sessions. Columns 5 and 6 in each panel of Table 4 report the likelihood ratio test statistics for

the hypotheses that the parameters are equal across two sessions: Hθ
0 : θ1 = θ2, and Hκ

0 : κ1 = κ2

respectively. All reported test statistics have a chi-squared distribution with 1 degree of freedom.

Table 4 identifies cases when the null is rejected and the costs are higher (capacity is lower) in

the first session with the § sign. Similarly, cases when the null is rejected and the costs are lower

(capacity is higher) in the first session are marked with the ♣ sign. We find statistically significant

evidence that for 21 participant out of 40 the estimates of costs fall in the second session compared

to the first. For another 15 participants out of 40, we cannot reject the null that costs have not

changed. However, for the majority of these participants the estimates of costs also fall. Only for

4 participants out of 40 we find that the estimates of costs increase in second session compared to

the first.

The conclusion that we can draw from this result is that the vast majority of participants of

our experiment acquire knowledge about the experimental environment in the first session. This

knowledge allows them to be more precise in the second session. Only every tenth participant

violates this dynamic prediction of our theory.

A more nuanced way of studying the dynamic behavior of participants of the experiment is by

running rolling-window estimates of costs of information, like we did with Monte-Carlo simulations.

We use rolling windows which include answers to 10 consecutive repetitions of each question. For

each window, we estimate the costs of information θ̂, while keeping the estimates of all other

parameters fixed at values in Tables 4 and 5. We apply the rolling window estimation procedure to

each session for each participant separately.

For illustrative purposes, we average the estimates across: 1) all 40 participants of the ex-

periment; 2) the 21 participants which we identified as “learners”; and 3) the 15 “consistent”

participants for which we could not detect a significant change in cost estimates. The averaged

dynamic estimates of costs of information are shown in Figure 5.
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We find that rolling-window estimates of costs of information fall over the course of both sections

for all three groups of participants. The main difference between the two sub-groups seems to be

the speed of convergence. These estimates suggest that participants indeed acquire information

slowly about the experimental environment, as predicted by our dynamic model.

Figure 6 shows for the same groups of participants the average switching rates, i.e. the fre-

quencies with which participants switch between answers to the same questions over the course of

the two sessions. The switching rates behave very similarly to estimates of costs of information,

demonstrating that as participants learn about the environment over the course of the experiment,

their choices become sharper and more consistent.

Our model provides a unified framework for rationalizing these empirical regularities without

relying on ad hoc assumptions. In particular, we have established three empirical facts. The first

fact is that participants are much more consistent in the second session, which may be several days

after the first one. Our model shows that this is consistent with participants learning something

important about the experiment in the first session. The second fact is that participants remain

highly inconsistent after encountering each pair of gambles more than 50 times. Our model shows

that this observation can be explained by cognitive limitations. The third fact is that participants

remain predictably more consistent on more “valuable” questions. Our model shows that this can

be accounted for by the participants’ choice to vary information capacity in response to incentives.

These three facts are predicted and jointly accounted for by our model.

5 Conclusion

In this paper we propose a dynamic rational inattention model as an explanation to probabilistic

outcomes of discrete choices in repeated settings. From the channel capacity, the core technology

of rational inattention, we investigate whether a linear cost associated to processing information

with varying capacity is more suitable for describing people’s behavior than a fixed bound on

information-processing capacity, reminiscent of many bounded rationality models. We use data

from a unique behavioral experiment to test the predictions of our theory. Experimental evidence

provides overwhelming support to the varying capacity specification of the cost function.

Moreover, experimental evidence strongly supports the predictions of our model that: (a) indi-

vidual people behave probabilistically when repeatedly faced with the same choices; (b) the larger
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the difference in valuations between options, the smaller the frequency of erroneous choice; (c) as

the experiment progresses, people increase their information processing capacity, thereby making

more consistent and sharper choices.

In light of these findings, the approach proposed in this paper might be a useful tool for modeling

bounded rationality in macroeconomics and in behavioral social choice.
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A Appendix: Proofs (NOT FOR PUBLICATION)

A.1 Proof of Theorem 1

Proof. Let Γ (ω, ω̂) be the constraint set containing (6)-(8). The H mapping displays:

HW (g) = max
p(ω,ω̂)∈Γ(ω,ω̂)

HpW (g (ω)) ,

with

HpW (g) =
∑
ωt∈Ωω

V (ωt|ω̂t) s (kt|ω̂t)− C (κt)

+ β
∑

ωt+1∈Ω

W (gt+1 (ωt+1) |ω̂t) R (ωt+1, ω̂t+1|ωt, ω̂t) s (kt|ω̂t) .

Assume that ||HW −HU|| is the maximum at point g ≡ g (ω). Let p1 ≡ p1 (ω, ω̂) denote the

optimal control for HW at g and p2 ≡ p2 (ω, ω̂) the optimal one for HU .

HW (g) = Hp1W (g) ,

HU (g) = Hp2U (g) .

Then it holds

||HW (g)−HU (g)|| = Hp1W (g)−Hp2U (g) ,

assuming WLOG that HW (g) ≥ HU (g) . Since p2 maximizes HU at g, it follows that

Hp2U (g) ≥ Hp1U (g) (24)

When we apply the mapping H we have:

||HW −HU|| =

||HW (g)−HU (g)|| =

Hp1W (g)−Hp2U (g) ≤ (25)

Hp1W (g)−Hp1U (g) =

β
∑
ω∈Ωω

∑
ω̂∈Ωω̂

Wp1 (g′|ω̂) p1g − β
∑
ω∈Ωω

∑
ω̂∈Ωω̂

[(Up1 (g′|ω̂))] p1g ≤

β
∑
ω∈Ωω

∑
ω̂∈Ωω̂

(||W − U||) p1g =
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β ||W − U||

where the inequality in (25) comes from the fact that we are subtracting less given (24).

Recalling that 0 ≤ β < 1 completes the proof.

A.2 Proof of Theorem 2

Proof. The proof is done via induction. We assume that all the operations are well-defined in their

corresponding spaces. As in the previous proof, let Γ (ω, ω̂) be the constraint set containing (6)-(8).

For planning horizon n = 0, we have only to take into account the immediate expected rewards.

Let m (ω̂|ω) be the conditional distribution of ω̂ given ω defined ad m (ω̂|ω) = p(ω,ω̂)
g(ω) . Then, we

can define the contemporaneous reward as:

W0 (g) = max
m(ω̂|ω)∈Γ(ω,ω̂)

[∑
ω∈Ω

V (ω)m (ω̂|ω) g (ω)− C (κ)

]
(26)

and given that the cost function C (κ) is increasing and convex, we can define the vectors

{
αi0 (ω)

}
i
≡

(∑
ω∈Ω

V (ω|ω̂)m (ω̂|ω)

)
m(ω̂|ω)∈Γ(ω,ω̂)

(27)

which leads to the desired

W0 (g) = max
{αi0(ω)}

i

〈
αi0, g

〉
(28)

where 〈., .〉 denotes the inner product
〈
αi0, g

〉
≡
∑
ω∈Ω

αi0 (ω) , g (ω).For the general case, :

Wn (g) = max
m(ω̂|ω)∈Γ(ω,ω̂)


∑
ω∈Ω

V (ω|ω̂)m (ω̂|ω) g (ω)− C (κ) +

+β
∑

ω,ω′∈Ω

∑
ω̂,ω̂′∈Ω

W (g′ (ω′) |ω̂) R (ω′, ω̂′|ω, ω̂)m (ω̂|ω) g (ω)

 (29)

by the induction hypothesis

Wn−1 (g (·)|ω̂) = max
{αin−1}i

〈
αin−1, g

′
ω̂ (·)

〉
(30)

Plugging into the above equation and by definition of 〈., .〉 ,

Wn−1 (g′ω̂ (·)) = max
{αin−1}i

∑
ω,ω′∈Ω

∑
ω̂,ω̂′∈Ω

αin−1 (g (ω′))

(
R (ω′, ω̂′|ω, ω̂)

p (ω, ω̂)

f (ω̂)

)
(31)
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where f (ω̂) is the marginal distribution of ω̂.

With the above:

Wn (g) = max
m∈Γ


∑
ω∈Ωω

V (ω|ω̂)m (ω̂|ω) g (ω)− C (κ) +

+β max
{αin−1}i

∑
ω̂∈Ω

1
f(ω̂)

∑
ω,ω′∈Ω

∑
ω̂′∈Ω

αin−1 (ω′) (R (ω′, ω̂′|ω, ω̂)m (ω̂|ω)) g (ω)


= max

m∈Γ

[
〈V ·m, g (ω)〉 − C (κ) + β

∑
ω̂∈Ω

1

f (ω̂)
max
{αin−1}i

〈∑
ω′∈Ω

αin−1 (w′) R (ω′, ω̂′|ω, ω̂) ·m, g

〉]
(32)

At this point, it is possible to define

αjm,ω̂ (ω) =
∑
ω′∈Ω

αin−1 (ω′) R (ω′, ω̂′|ω, ω̂) ·m. (33)

Note that these hyperplanes are independent on the prior g for which the value function Vn is

computed. Thus, the value function amounts to

Wn (g) = max
m∈Γ

〈V ·m, g〉+ β
∑
ω̂∈Ω

1

f (ω̂)
max
{αjm,ω̂}j

〈
αjm,ω̂, g

〉 , (34)

and define:

αm,ω̂,g = arg max
{αjm,ω̂}j

〈
αjm,ω̂, g

〉
. (35)

Note that αm,ω̂,g is a subset of αjm,ω̂ and using this subset results into

Wn (g) = max
m∈Γ

[
〈V ·m, g〉+ β

∑
ω̂∈Ω

1

f (ω̂)
〈αm,ω̂,g, g〉

]

= max
m∈Γ

〈
V ·m+ β

∑
ω̂∈Ω

1

f (ω̂)
αm,ω̂,g, g

〉
. (36)

Now {
αin
}
i

=
⋃
∀g

{
V ·m+ β

∑
ω̂∈Ω

1

f (ω̂)
αm,ω̂,g

}
m∈Γ

(37)

is a finite set of linear functions parametrized in the action set.

The final step entails the proof that the
{
αin
}
i

sets are finite and discrete for all n. The finite

cardinatility of these sets is an important step since it proves that we can represent Wn (g) with a

finite set of supporting α−functions. Again, we proceed via induction. For discrete actions,
{
αiω̂
}
i
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is discrete from its definition in (30). For the general case, we have to observe that for discrete

actions and observation ω̂ and assuming M =
∣∣∣{αjn−1

}
i

∣∣∣, the sets
{
αim,ω̂

}
i

are finite and discrete:

for a given action m and observation ω̂ we can generate at most M αjm,ω̂ functions. Note that fixing

the action, we can select one of the M αjp,0 functions for each one of the observation and, thus, the{
αin
}
i

set is of finite cardinality.

A.3 Proof of Lemma 1

Proof. We need to evaluate limt→∞

(
f(ω̂t+1|ωt+1)(P (ωt+1|ωt)h(ωt))

p(ωt,ω̃t)

)
. Given that the optimal distri-

bution is ergodic, letting t → ∞ leads to p (ωt, ω̃t) = p (ωt+1, ω̃t+1) = p (ω, ω̃), h (ωt) = h (ωt+1) =

h (ω) and P (ωt+1|ωt) = P . Then:

lim
t→∞

(
f (ω̂t+1|ωt+1)h (ωt)

p (ωt, ω̃t)
(P (ωt+1|ωt))

)
=

(
f (ω̂|ω)

f (ω̂|ω)
P

)
= P

A.4 Proof of Lemma 2

Proof. From the previous lemma, we know that 1
T

∑T−1
t=0 Rt → P and that PR = P. Writing the

equality of these matrixes as the equlity of the row vetors, we have p−s = [pω1
, .., pωΩ

] = pω ×R, so

each row pω is an invariant distribution. Moreover, an invariant distribution ḡ (ω) satisfies

∀n : ḡ (ω) =
∑
i∈Ω

(
1

T

T−1∑
t=0

Rt

)
(i, ω) ḡ (i)→

∑
i∈Ω

P (i, ω) ḡ (ω)

A.5 Proof of Lemma 3

Proof. Let us suppose that E and E∗ are two ergodic sets for the transition function P. Proving

that there exists a subset a ∈ E ∩ E∗ such that ḡ (a) > 0, then E and E∗ are not distinct ergodic

sets. That is, if P (a, E) = 1 and P (a, E∗) = 1, then E is equal to E∗. Since there is a positive

probability of asking question ω1 ∈ Ω in the experiment, g (ω1) > 0. If E is an ergodic set in Ω,

then P (ω1, E) = 1 which implies ω1 ∈ E . If E∗ were another ergodic set of Ω, we would get ω1 ∈ E∗

using the same argument. Thus, ω1 ∈ E ∩ E∗.
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A.6 Proof of Theorem 3

Proof. Combining the fact that the long-run transition function R (:) converges to P (Lemma 1)

and R (:) has a unique invariant distribution (Lemma 3 and Theorem 11.2 of Lucas, Stockey and

Prescott), it follows that h (ω) =
∑
ω̂ p (ω, ω̂) eventually converges to the steady state distribution,

ḡ (ω).

A.7 Proof of Theorem 4

Proof. Let ψ (ωt, ωt+1) denote the joint distribution of ωt and ωt+1 under the prior, i.e., ψ (ωt, ωt+1) =

g (ωt)P (ωt+1|ωt) and let υ (ω̂t+1, ω̂t, ωt+1, ωt+1) = p (ω̂t, ωt) (R (ωt+1, ω̂t+1|ωt, ω̂t)) be the corre-

sponding joint probability under the distribution selected by the decision maker. The chain rule

for relative entropy implies

d (υ (ω̂t+1, ω̂t, ωt+1, ωt+1) ||ψ (ωt, ωt+1))

(a)
= d (p (ω̂t, ωt) ||g (ωt)) + d (R (ωt+1, ω̂t+1|ωt, ω̂t) ||P (ωt+1|ωt))
b
= d (p (ω̂t+1, ωt+1) ||g (ωt+1)) + d (R (ωt, ω̂t|ωt+1, ω̂t+1) ||P (ωt|ωt+1)) (38)

where (a) comes from the chain rule for entropy and (b) comes from the time symmetry of the

Markov process.

The conditional probability distributions are given by: p (ω̂t+1, ωt+1|ω̂t, ωt) = (R (ωt+1, ω̂t+1|ωt, ω̂t)) =

h(ωt)f(ω̂t+1|ωt+1)
p(ωt,ω̃t)

P (ωt+1|ωt) = f(ω̂t+1|ωt+1)
f(ω̃t|ωt) P (ωt+1|ωt) and g (ωt+1|ωt) = P (ωt+1|ωt). Using the

non-negativity of d (R (ωt, ω̂t|ωt+1, ω̂t+1) ||P (ωt|ωt+1)) from Corollary to Theorem 2.6.3 in Cover

and Thomas, it has to be the case that:

d (p (ω̂t, ωt) ||g (ωt)) ≥ d (p (ωt+1, ω̂t+1) ||g (ωt+1)) (39)

and consequently the distance between these two probability functions is decreasing in time.

Note that as time progresses limt→∞
1
t

(
f(ω̂t+1|ωt+1)
f(ω̃t|ωt)

)
= limt→∞

1
t

(
f(ω̂t|ωt)
f(ω̃|ω)

)
= 1 and thus

limt→∞
1
t d
((

f(ω̂t+1|ωt+1)
f(ω̃t|ωt) P (ωt+1|ωt) ||P (ωt+1|ωt)

))
= 0. This implies that the quantity d (R (ωt+1, ω̂t+1|ωt, ω̂t) ||P (ωt+1|ωt))

vanishes over time.

Let us focus now on the limiting distributions. If we let ḡ (ωt) be any stationary distribution,

the sequence d (p (ω̂t, ωt) |ḡ (ωt)) is a monotonically non-increasing non-negative sequence and must

therefore have a non-negative limit. Note that this limit is non-zero since we can further decompose
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p (ωt, ω̂t) = h (ωt)m (ωt|ω̂t) and by Theorem 3 we know that limt→∞
1
t (h (ωt)) = ḡ0 (ωt) = g0

implying that limt→∞ (d (h (ωt) ||ḡ0 (ωt))) = limt→∞ (d (h (ωt+1) ||ḡ0 (ωt+1))) = 0. Then, by the

definition of relative entropy:

d (p (ω̂t, ωt) ||ḡ0 (ωt)) =
∑
ω

∑
ω̂

p (ωt, ω̂t) log

(
p (ωt, ω̂t)

ḡ0 (ωt)

)
= −

∑
ω

∑
ω̂

h (ωt)m (ωt|ω̂t) log

(
ḡ0 (ωt)

h (ωt)m (ωt|ω̂t)

)
= −

∑
ω

∑
ω̂

h (ωt)m (ωt|ω̂t)
[
log

(
ḡ0 (ωt)

h (ωt)

)
+ log

(
1

m (ωt|ω̂t)

)]
Let m̄ (ω|ω̂) denote the stationary distribution of m (ωt|ω̂t). Then, taking the limt→∞ for the above

expression results into:

lim
t→∞

(d (p (ω̂t, ωt) |g0))→ −

[∑
ω

∑
ω̂

ḡ0 (ω) m̄ (ω|ω̂) log

(
1

m̄ (ω|ω̂)

)]

(c)
> log

(∑
ω

ḡ0 (ω)

)
= 0

where (c) follows from Jensen’s inequality and the inequality is strict since m̄ (ω|ω̂) = p(ω,ω̂)
ḡ0(ω) 6=

ḡ0 (ω).

A.8 Proof of Theorem 5

Proof. First let us denote
∑
q∈Ωq

g (q, k) = g0 (k) . Then, the problem can be conveniently rewritten

into:

max
s(k)

∑
k∈Ωk

V (k) s (k)− C (κ) (40)

s.t.

κ = I (s (k) ; g0 (k)) =
∑
k∈Ωk

s (k) log2

s (k)

g0 (k)
(41)

s (k) ≥ 0,
∑
k∈Ωk

s (q, k) = 1 (42)

First, note that information, I (s (k) ; g0 (k)) is a strictly convex function of the probability

distribution {s (k)}. This follows from the fact that this function is twice differentiable, and its

Hessian is a diagonal matrix which contains only non-negative elements.
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Second, since C (κ) is increasing and convex in I (s (k) ; g0 (k)), convexity of information with

respect to probabilities {s (k)} guarantees that the composite function C (I (s (k) ; g0 (k))) is also

a convex function of the probability distribution {s (k)}. This in turn implies that the objective

function of the decision-maker is concave in the choice variable {s (k)}.

Maximization of a concave function with respect to a linear constraint with a non-zero gradient

and a set of non-negativity constraints leads to a unique solution satisfying the first-order condition:

V (k)− θ

ln 2

(
ln

s (k)

g0 (k)
+ 1

)
− λ = 0.

where θ = ∂C(I(s(k);g0(k)))
∂I(s(k);g0(k)) is the derivative of the cost function and λ is the Lagrange multiplier

associated with the constraint that probabilities sum up to one. Note that this equation holds for

all k ∈ Ωk. We can combine first-order conditions for any pair of k and k′ ∈ Ωkto obtain:

s (k)

s (k′)
=

g0 (k)

g0 (k′)
exp

(
V (k)− V (k′)

θ/ ln 2

)
.

By further rearranging and summing up over s (k) we obtain the optimal probability (12).

A.9 Proof of Theorem 6

Proof. Consider a pair of gambles which gives each agent a value differential x ∈ R. Denote

parameter of the gamble pair a = e−x ln 2 > 0 and inverse cost ψi = 1
θi
> 0. According to predictions

of rational inattention theory, the choice probability of agent i over gamble pair x is given by:

yi = 1

1+e
− x ln 2

θi

= 1
1+aψi

.

The representative agent’s choice probability is computed by averaging across agents:

yRA = 1
NΣNi=1yi = 1

NΣNi=1
1

1+aψi
.

Her inverse cost of information is then computed inverting the function:

yRA = 1
1+aψRA

.

Consider the function f (z) = 1
1+az on z > 0. This function is strictly increasing and concave for

a < 1, strictly decreasing and convex for a > 1, equals 1
2 when a = 1. This last case happens only

when when x = 0, when both sides are 1
2 so θRA is undefined. Consider the case a < 1 first. By

Jensen’s inequality for any (unequal) values zj in the domain and for any strictly positive weights

aj a concave function f (z) satisfies:

f
(

Σjajzj
Σjaj

)
>

Σjajf(zj)
Σaj

.

Hence,
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1
1+aψRA

= 1
NΣNi=1

1
1+aψi

< 1

1+a
1
N

ΣN
i=1

ψi
.

Since the function f (z) is strictly increasing in z it follows that

1
θRA

< 1
NΣNi=1

1
θi
.

Similarly, when a > 1 the function −f (z) is strictly increasing and concave. Hence,

1
1+aψRA

= 1
NΣNi=1

1
1+aψi

> 1

1+a
1
N

ΣN
i=1

ψi
.

Since the function f (z) is now strictly decreasing in z it again follows that

1
θRA

< 1
NΣNi=1

1
θi
.

Note that the bias disappears only if all agents have identical costs of information (θi = θj) or

when the two options being compared are identical (a→ 1).

B Appendix: Extended Discussion

B.1 Rational Inattention as a Theory of Probabilistic Choice

Consider a choice between two options, A and B. Figure 6 displays on the vertical axis the proba-

bility of choosing option A whereas on the horizontal axis it displays the value differential between

the two options according to some decision theory. The dashed line shows the predictions of any

existing rational decision theory and the solid line represents a typical observed mean response av-

eraged across a sample population in an experimental setting, approximated by Luce’s probabilistic

choice model.

The observed frequency of choosing option A is at odds with predictions of existing decision

theories: in reality, people do make errors. The frequency of making an error depends on the

difference in values of the two options. The bigger this difference, the more consistent are people

in their choices. The goal of this paper is to construct a model where the observed frequency of

choosing option A can be fully taken into account as an outcome of rational choice.
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Figure 6: Data Averages and Predictions of a Decision Theory

To explain the observed choice frequencies we use insights from the rational inattention literature

of Sims (2003), (2006), Tutino (2011).16 We think that this framework can help explain individual

and aggregate deviations from the rational choice paradigm documented by the behavioral decision

literature.

Rational inattention theory is based on (1) a statistical measure of uncertainty intrinsic to

choice between options and (2) people’s value of those options as determined by their decision

theory. The measure of uncertainty of the options is based on Shannon’s (1948) entropy. Entropy

is measured in bits of information. This measure is parsimonious, yet general, as it depends solely

on the probabilistic nature of the options. Shannon’s channel capacity (1948) is used to measure

the amount of information processed when choosing between options. The amount of information

processed through the channel, equal to the reduction in uncertainty achieved through the choice

process, depends only on the joint distribution between the choice options presented to the decision

maker and her behavior. This reduction in uncertainty is also measured in bits of information.

16An early description of the ideas behind rational inattention theory can be found in Sims (1998). An accessible

exposition of rational inattention theory can be found in Wiederholt (2010).
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The idea that processing information is costly is captured in rational inattention theory by

associating a utility cost to the capacity of the channel. This cost represents the effort that people

put in processing information. To measure the amount of information that people can process in a

given unit of time, we use the analogy that people’s brains and their cognitive ability of processing

information can be thought of as akin to an information processing device, such as a computer or a

telephone line. These devices can bring a limited amount of information from a sender to a receiver

in a finite period of time. For instance, we rely on the transmission rate of the computer to load

the content of an email. Similarly, we rely on our brain to understand the content of the email and,

possibly, produce a reply. As most information processing devices, the human brain cannot absorb

nor react to information infinitely quickly and precisely. Hence, people’s choices are prone to error.

By error we mean that given two alternatives, A and B, the person might choose alternative A over

alternative B even though B yields higher value than A.

We propose a dynamic model based on rational inattention theory capable of gauging behavioral

variations in repeated settings. In both behavioral experiments and everyday life, a decision maker

is asked to make similar decisions several times over. For instance, in the example of the email,

she might receive emails from the same set of senders. In such a case, the experience accumulated

over time might suggest which sender would command higher attention and where in the text of

a given sender the most important piece of information is located. By exploiting this knowledge,

the decision maker can craft sharper and faster replies over time. Likewise, in an experiment where

there are, e.g., twenty questions each involving two alternatives and such an experiment is repeated

several times, over the course of the experiment, the decision maker can discern more quickly which

questions involve higher stake and focus her attention on those to pick the higher value alternative.

Thus, in a dynamic environment one can investigate whether and to what extent the frequency of

mistakes is associated with the context and whether the understanding of the context acquired via

repeated observations leads to higher or lower perceptional bias.

The key difference from previous rational theories comes from the fact that rational inattention

theory allows the decision maker to rationally choose how much information to process and maps

this choice onto her choice frequency. The decision maker is able to select the pieces of information

that are the most relevant for her utility and ignore the rest. So long as potential errors stemming

from her disregarding of information are taken into account by the decision-maker, inattentive

behavior is a natural outcome of the optimizing framework postulated by rational choice theory.
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We shall now turn to the formal description of the information-processing technology employed

by Rational Inattention Theory and the theoretical framework of the paper. The next subsection

provides a simple example of our mechanism at work.

B.2 The mechanics of the Rational inattention model: an example

To see the intuition behind our application of rational inattention theory, consider an illustrative

example. Two cards are randomly drawn from a deck and placed on the table. A player’s payoff is

determined by the dollar values written on the cards and by her decision of which of the two cards

to pick up. The player is allowed to pick up only one of the cards, the one on the left or the one

on the right, which will determine her payoff. For transparency of exposition we assume that the

player is risk-neutral.

We can interpret the idea that the player does not know the values of the cards ex ante by

thinking of them in a probabilistic sense. For instance, consider a deck with an equal number of

three types of cards with payoffs of $18, $9 and $0 respectively written on them. We assume that

the player knows the payoffs and the probability distribution of the cards. We can interpret the

idea that the player needs to process information before making her decision, as if before processing

information she perceives the cards to be face down.

Before picking up a card, she can choose to process some information about the outcome by

flipping some of the cards. She can take a look at none of the cards (strategy S=0), or just at

one card (strategy S=1), or at both cards (strategy S=2). The more cards she flips the larger the

amount of information he will be processing.

We define the amount of information processed as the reduction in uncertainty associated with

the probability distribution over the potential payoffs. As we shall see, each of the strategies

S ∈ {0, 1, 2} is associated with a probability distribution over payoffs [18, 9, 0]. We denote this

probability distribution [p18, p9, p0], where all probabilities are non-negative and sum up to one.

Note that each strategy S implies different probability distributions. The uncertainty associated

with each strategy S is equal to the entropy, denoted H (S), of the corresponding probability

distribution. Entropy is computed as follows:

H (S) = p18 log2 p18 + p9 log2 p9 + p0 log2 p0.

Ex ante uncertainty, equivalent to strategy S = 0, is represented by a uniform distribution.
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When all cards have the same probability 1
3 the corresponding value of entropy equals H (0) =

log2
1
3 . The amount of information processed for each strategy S equals the reduction in uncertainty

associated with strategy S net of ex ante uncertainty, H (0). We denote I (S) the amount of

information processed when playing strategy S. It is computed as follows:

I (S) = H (S)−H (0) = p18 log2 p18 + p9 log2 p9 + p0 log2 p0 − log2

1

3
.

We assume that the player faces a cost of θ dollars per bit of information to process. The

player ex-ante plans which card (left or right) to pick up conditional on her strategy S and the

corresponding amount of information that she gets. Thus, the player faces a tradeoff between the

expected payoff and the cost of processing information. Her optimal strategy reflects the optimal

amount of information to process and may result in not always picking the card with the highest

payoff.

Figure 7. Decision Tree of the Game.

Following the rational inattention literature, we define the expected value associated with strat-
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egy S as the difference between the expected payoff and the cost of information:

V (S) = 18p18 + 9p9 + 0p0 − θI (S) .

Let us consider each potential strategy in turn, derive the corresponding probability distribution

and use it to compute the expected value of the strategy. Figure 7 describes the tree of consequences

for each strategy illustrating the corresponding outcomes and potential payoffs. Strategies are

denoted S=0, S=1 and S=2 on the left. In each case the card which is picked up is highlighted by

a box. Columns on the right represent final payoffs ($18, $9 and $0 at the top) and pairs of cards

which would lead to those payoffs under each strategy. For instance, under strategy S=0 the card

on the left17 is picked up (highlighted). For example, if the card on the left is 0, and the card on

the right is 0, 9 or 18, the player gets $0 (right-most column). Outcomes when the card with a

strictly lower payoff is picked up are marked with stars in Figure 7.

We shall start with two extremes. First, consider the strategy of flipping none of the cards

(strategy S=0). In this case the player can randomly pick one of the cards, which gives him a

uniform distribution over payoffs
[

1
3 ,

1
3 ,

1
3

]
. In this case the probability of making an error, i.e.

picking the card which yields a strictly lower payoff is 1
3 . The associated amount of information is

zero, and the expected value of this strategy is:

V (0) =
1

3
18 +

1

3
9 +

1

3
0− 0θ = 9.

Second, consider the other extreme of flipping both cards (strategy S=2). In this case the player

can always pick up the better one of the two. The probability of making an error is zero. This

strategy gives the player $18 in 5 cases out of 9, $9 in 3 cases out of nine, and leaves him with $0

only if both cards contain $0. Therefore, the associated expected value is:

V (2) =
5

9
18 +

3

9
9 +

1

9
0− θ

(
5

9
log2

5

9
+

3

9
log2

3

9
+

1

9
log2

1

9
− log2

1

3

)
= 13− 0.23θ.

Finally, consider the strategy of flipping only one of the cards (strategy S=1) and the associated

conditional choices. Without loss of generality, let the card be the one of the left. In case this card

is $18, it is always better to pick it up and get $18 for sure. In case the card on the left is $0, it is

better to pick up the other card, as the prospect of getting something is better than the prospect of

17We could assume either left or right here, without loss of generality.
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getting nothing for sure.18 In case the card on the left gives $9, the expected payoffs on the left and

on the right are equal, but picking up the card on the right is associated with higher uncertainty.

This implies a lower amount of information processed, and hence a higher expected value. As a

result, in case the card on the left gives $9, it is better to pick up the card on the right.

By multiplying the probabilities of getting each of the cards on the left by the conditional prob-

abilities associated with picking left or right in each case, we arrive at the probability distribution[
5
9 ,

2
9 ,

2
9

]
associated with the strategy of looking at just one card:

1

3
[1, 0, 0] +

1

3

[
1

3
,

1

3
,

1

3

]
+

1

3

[
1

3
,

1

3
,

1

3

]
=

[
5

9
,

2

9
,

2

9

]
.

The expected value of strategy S = 1 is then:

V (1) =
5

9
18 +

2

9
9 +

2

9
0− θ

(
5

9
log2

5

9
+

2

9
log2

2

9
+

2

9
log2

2

9
− log2

1

3

)
= 12− 0.15θ.
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Figure 8. Expected Values of the Strategies

18Note that in case the cost of information is so high that the extra uncertainty associated with a gamble on the

right is higher than the incremental expected payoff of $9 on the left, strategy S=0 also strictly dominates strategy

S=1.
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Strategy Prob Dist Info Value Cost of Info P(error)

0 [3/9, 3/9, 3/9] 0 9 θ > 20.1 1/3

1 [5/9, 2/9, 2/9] 0.15 12-0.15θ 11.9 < θ ≤ 20.1 1/9

2 [5/9, 3/9, 1/9] 0.23 13-0.23θ 0 ≤ θ ≤ 11.9 0

Table 7. Properties of the Strategies

Figure 8 compares the expected values associated with each of the strategies. It makes clear that

different values of information cost will lead to different optimal strategies. Table 7 summarizes for

each of the three strategies, the corresponding probability distribution over payoffs, the expected

value of the strategy, the range of costs of information when the strategy is optimal and the

probability of picking the wrong card.

Our example illustrates three points. First, a lower cost of processing information leads to

more information being processed. Second, a lower cost of information is associated with a lower

probability of making an error. Third, even when it is feasible to eliminate errors completely and

make a fully informed choice, it may be optimal to leave room for error if information processing is

costly.

The behavior of the player in our example illustrates a way a person could process information

about any two options. She could be playing a mind game of asking himself questions about the

two options, which will give him pieces of information necessary to make the choice. Ofttimes, the

person would be able to economize on time and effort instead of determining precisely which option

is better. She would economize more in situations when the outcomes are closer to each other.

Note that in our example by asking himself other types of questions like “is the left card 18$?”

or, more generally, by optimally choosing the perceived distribution of payoffs written on the cards,

the player is in principle able to break available information into even finer pieces. A more general

cognitive process which could represent decision making in this case could be described as follows.

Before processing any information about choice options, the decision maker represents uncer-

tainty about the options in the form of some probability distribution over payoffs. She evaluates

the options starting with this prior distribution. One can think of the process of evaluation as a

randomly drawn sequence of attributes that the person pays attention to. Evaluation using each

attribute gives the decision maker new information about the options. He uses this information to

update her prior and obtain a tighter posterior at each step.
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Paying attention to every next attribute involves as much effort. Meanwhile each attribute

makes the posterior tighter lowering the information gain from the next attribute. At some step

the decision maker will feel that thinking more about the options is counterproductive. This will

happen when the benefit from drawing another attribute and tightening the posterior even further

is not worth the cognitive effort of thinking of another attribute. At this point the person will stop

and pick the option with the highest weight in her current posterior.

Of course, the cognitive representation we just described is by no means unique. However, our

example illustrates that the brain works as an information processing device. Independent of the

particular cognitive process, it will have the features of Shannon’s channel and will be subject to

constraints placed by Shannon’s information theory.

We use rational inattention theory, which relies on the analogy with Shannon’s channel to

describe the observed outcome without going into the details of particular representations of gambles

and attributes and their optimal choice in the mind of a person. We follow the rational inattention

literature in adopting the assumption that coding of information is done efficiently, while processing

information through the channel is costly. By coding we mean the process through which people

’read’ the information presented to them.

Rational inattention theory provides a general framework for describing choices when processing

information is costly. It does so abstracting from the details of coding information through specific

questions and payoff distributions. In this paper we use rational inattention theory to describe a

general dynamic model of discrete choice among gambles and derive the optimal choice probabilities.

B.3 Coding, knowledge, models of heuristics and coalescing

Our model based on rational inattention theory focuses on a decision maker’s ability to act in an

uncertain environment with limited processing capacity. Our model postulates that the decision

maker, aware of her limited processing capacity, selects the information structure that conveys the

highest utility. As a result, our model predicts that a rationally inattentive decision maker optimally

chooses the amount of uncertainty that he is willing to tolerate by evaluating costs and benefits of

processing information. This subsection makes four observations on the rational inattention model

we proposed.

First, one important assumption of our model is that the only source of uncertainty faced by

the decision maker is in the distribution of options (“states of the world”). We do not address any
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form of cognitive bias that might emerge from presenting the options as made of different numbers

of branches (e.g. three instead of two) or of different probability representations (e.g. pie charts

as opposite to percentages). These cognitive biases are treated in Shannon’s information theory

as coding and decoding problems. As the example in the previous subsection makes clear, the

way options are presented is one potential source of inefficient codeing. That is, when evaluating

the capacity of a channel -human brain, in our case-, a prominent branch of information theory is

concerned about the optimal design and compression of inputs and outputs of the channel. Albeit

we recognize that such a cognitive bias may be sizeable in experimental studies, we choose not to

model this bias explicitly. In the main body of the paper we assume that the coding is always

efficient.

Second, we want to highlight the difference between information and knowledge in our model.

Some studies have interpreted information as equivalent to knowledge. For instance, Gigerenzer

and Goldstein (2011) describe recognition and evaluation as the two processes that constitute

information use for decision making. They describe recognition as the process of accessing memory,

-i.e., previous knowledge-, and evaluation as the process of comparing choice options to objects

in the knowledge base. The decision maker does not acquire new information or produce new

knowledge when using this heuristic process. In our model, recognition corresponds to the prior of

the participant about the gamble she faces. Before processing any information, this prior knowledge

is measured by the uncertainty (or entropy) of the gambles. Then, evaluation corresponds to

processing information about the gambles in order to reduce uncertainty. Thus, in our model,

evaluation is the process of acquiring information and forming new knowledge.

Third, we want to emphasize the difference between rational inattention models and models of

heuristics as advocated by, inter alia, Cokely, Schooler and Gigerenzer (2010), as well as models

based on Decision Field Theory, as advocated by Busemeyer and Townsend (1993). The reason why

we use rational inattention theory to describe people’s behavior is due to the fact that its statistical

foundations make the model general and universally applicable. So long as we can characterize

the distribution of the state variables, we can measure ex-ante uncertainty. So long as we can

postulate a decision theory, we can predict and measure the optimal reduction of uncertainty of the

decision maker. We are concerned about the ability of the model to produce predictions consistent

with observed behavior. We do not take a stand on whether this modeling strategy replicates the

cognitive process that occurs in people’s brains when they make decisions. This area of research
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goes beyond the scope of our paper.

Forth, we want to address the relationship between the information processing constraint and

experimental design, with particualr emphasis on the phenomenon of coalescing. In Section 3, we

pointed out that the technological constraint is independent of the objective probabilities pjk and

the J possible outcomes since by assumption the decision maker cannot influence the experimental

set-up of the gambles proposed: she can only choose which gamble to pick. A word of caution is

in order here. While experiment participants take the format of the game as given, the experiment

designer needs to be mindful of the way the gambles are set-up.

Experimental evidence19 suggests that varying the number of possible outcomes per gamble

influences the decision-maker’s choice. To make the discussion concrete, we illustrate the point

with the following example:

Example 3 [Birnbaum (2008)]Consider gamble A presented as follows

A : X1 .1 probability to win $100

X2 .1 probability to win $100

Y2 .8 probability to win $10

and define p (X1) = px1
= 0.1, p (X2) = px2

= 0.1and p (Y2) = p2 = .8. Now consider gamble A’

where (X1, X2) have been combined as follows

A′ : Y1 .2 probability to win $100

Y2 .8 probability to win $10

Gamble A′ is defined as the coalesced form of gamble A. Birbaum (2008) finds that people

choose differently if presented with gamble A compared to their choice if presented with gamble

A′. Rational inattention based Shannon’s information theory suggests that the transformation of

gamble A into gamble A′is not entropy-neutral, i.e., the uncertainty intrisic to gamble A is different

from that of gamble A′ since the event space in gamble A′ is coarser than that in gamble A. Thus,

the decision-maker’s choice when presented with gamble A and gamble A′ would encompass the

difference in costs per bit involved in processing information about gamble A and gamble A′. The

following lemma formalize the statement.

19See, e.g., Birnbaum (2003).
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Lemma 4 Given a partition α = [X1, X2, Y2] we form the partition β = [Y1, Y2] obtained by

merging (X1, X2) into Y1 where p (X1) = px1
and p (X2) = px2

and pi = P (Yi) . Then

H (β) ≤ H (α) (43)

Proof. The function ϕ (p) = −p log p is convex. Therefore for λ > 0 and p1−λ < p1 < p2 < p2 +λ

we have that

ϕ (p1 + p2) < ϕ (p1 − λ) + ϕ (p2 + λ) < ϕ (p1) + ϕ (p2)

Then,

H (α)− ϕ (px1)− ϕ (px2) = H (β)− ϕ (px1 + px2) (44)

because each side equals the contribution to H (α) and H (β) respectively due to the common

elements of α and β. Hence, (43) follows from (44).

Transforming the event space α into β implies moving probability mass from a state with low

probability to a state with high probability. Whenever this move occurs, the system becomes less

uniform and thus entropy decreases. This is the case for the example offered by Birnbaum (2008).

Example 4 [Birnbaum (2008) con’t.]The entropy of the gamble A is larger than the entropy of

gamble A’:

H (A) = 0.92 > 0.72 = H (A′) .

Thus, the first gamble has more uncertainty than the second gambles and thus requires higher ca-

pacity to be processed.
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