
SUGGESTED ANSWERS FOR MACRO COMPS - 2000-2004
NELSON SOBRINHO
WARNING: The answers suggested here are a collection of old stuffs. I am sure
you will find a lot of mistakes and typos. When you think my answers are wrong
just skip them and stick to your own solutions. I’m also sure you are able to find
more neat solutions than the ones suggested here. Try to discuss the Q&A with
your classmates, and with senior students. Please let me know all mistakes and
typos you will certainly find.
FALL 2000 - QUESTION 2
(a) Planner’s problem:

max
t0



tlogC1t  B log1  N1t  1  logC2t  B log1  N2t

s.t. C1t  C2t  A11N1t1  A21N2t1

where  is the weight of individual and 1   is the weight of individual 2. Since the
planner cares equally about the individuals we can set   1/2.

Let  t be the lagrange multiplier on the resource constraint at time t. The FOCs are:

C1t : 1/2C1t
  t

C2t : 1/2C2t
  t

N1t : 1/2B
1  N1t

  t
A11N1t1
N1t

N2t : 1/2B
1  N2t

  t
A21N2t1
N2t

After combining these conditions and rearranging terms we get:

C1t
C2t

 1  C1t  C2t  Ct

BN1t
1  N1t

 A11N1t1
Ct

BN2t
1  N2t

 A21N2t1
Ct

Solving these last two for N1t and N1t gives:
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1  N1t
N1t

 BCt
A11

1  N2t
N2t

 BCt
A21

Since A1  A2 individual 1 works more than individual 2 because he is more
productive. Both individuals consume the same amount because they are equally
weighted by the planner. Finally, the problem is static, rather than dynamic, because
there is no recursiveness.

(b) Planner’s problem:

max
t0



t 1
2 C1t

  1  1  N1t 
1
  12 C2t

  1  1  N2t 
1


s.t. C1t  C2t  A11N1t1  A21N2t1

Let  t be the lagrange multiplier on the resource constraint at time t. The FOCs are:

C1t : 1/2C1t  1  1  N1t 
1
 1C1t1   t

C2t : 1/2C2t  1  1  N2t 
1
 1C2t1   t

N1t : 1/21  C1t  1  1  N1t 
1
 11  N1t1   t

A11N1t1
N1t

N2t : 1/21  C2t  1  1  N2t 
1
 11  N2t1   t

A21N2t1
N2t

After combining these conditions and rearranging terms we get:

C1t
C2t

 C1t  1  1  N1t
C2t  1  1  N2t

1


1  N1t
1  N1t1

 A11N1t1

C1t1

1  N2t
1  N2t1

 A21N2t1

C2t1

Because preferences are no longer separable in consumption and labor, C1t  C2t and
N1t  N2t. Note that the above conditions collapse to the conditions found in item (a)
when   0.

FALL 2000 - QUESTION 3
(a) Note: There is a typo in the question. The model is non stochastic.

Planner’s DPP:

2



vk,h,A  max
k,n,s

 logc  1   log1  n  s  vk ,h,A 

s.t. c  i  Aknh1

k   1  kk  i
h  1  hh  s
A   A

This problem can be simplified to:

vk,h,A  max
k,n,s

 log Aknh1  1  kk  k   1   log1  n  s  vk , 1  hh  s,A

(b) Because the economy has two reproducible factors of production (physical capital
and human capital), the variables will potenttialy grow at different rates along the BGP.
Let gc be the growth rate of consumption, gk be the growth rate of physical capital, and
gh be the growth rate of human capital. The variables n and s are already stationary.
Using the resource constraint we get:

ct
kt

 kt1kt
 Atkt1ntht1  1  k

gc
gk

t ĉ t
k t

 gk   gh
1

gk1
t

k t1 ntĥt
1

 1  k

where the hat denotes stationary variables.

The left-hand side of the above expression is stationary if gc  gk  g. The right-hand
side is stationary if

gk1  gh1. This implies that

gc  gk  g  
1
1 gh

Now use the law of motion of h to pin down gh:

ht1
ht

 1  h  st
ht

gh  1  h  st
ght ĥt

This expression is stationary if

gh  1     (1)

Therefore,

g  
1
1     (2)

Characterization of the BGP:
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ct  
1
1 ĉ t

kt  
1
1 k t

yt  
1
1 ŷ t

ht  ĥt

(c) First, write down the planner’s stationary problem:

vk,ĥ  max
k ,n,s

 log k  nĥ 1
 1  kk  

1
1 k   1   log1  n  s  vk , 1  hĥ  s

Second, derive the stationary optimality conditions:

FOC k  : 
1
1

ĉ  v1k ,ĥ

FOC n :
1  k nĥ 1

ĉn  1  
1  n  s

FOC s : 1  
1  n  s  v2k ,ĥ

EC k : v1k,ĥ  
ĉ

k  nĥ 1

k
 1  k

EC ĥ : v2k,ĥ 
1  k  nĥ 1

ĉĥ
 v2k ,ĥ1  h

    (3.1)

    (3.2)

    (3.3)

    (3.4)

    (3.5)

Substituting (3.4) into 3.(1) gives:


1
1 ĉ 
ĉ  

k  nĥ 1

k 
 1  k     (3.6)

Substituting (3.3) into (3.5) gives:

v2k,ĥ 
1  k nĥ 1

ĉĥ
 1  
1  n  s 1  h

Therefore,

v2k ,ĥ 
1  k  nĥ 1

ĉ ĥ
  1  

1  n  s
1  h

Substituting this back into (3.3) gives:

1  
1  n  s 

1  k  nĥ 1

ĉ ĥ
  1  

1  n  s
1  h     (3.7)
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Collecting equations (3.2), (3.6), (3.7), and the other constraints we get:

Production function : ŷ t  k t ntĥt
1

Resource constraint : ĉ t  ŷ t  ît
Law of motion of capital : k t1  1  kk t  ît

Law of motion of human capital : ĥt1  1  hĥt  st

Labor choice : 1  ŷ tĉ tnt
 1  
1  nt  st

Physical capital euler equation : 
1
1 ĉ t1
ĉ t

  ŷ t1
k t1

 1  k

Human capital euler equation : 1  
1  nt  st

  1  ŷ t1
ĉ t1ĥt1

 1  1  h
1  nt1  st1

Third, get the steady state system of equations:

ŷ  k  nĥ 1

ĉ  ŷ  î
î  kk

s  hĥ
1  
n

ŷ
ĉ  1  

1  n  s


1
1    ŷ

k
 1  k

1  
1  n  s   1  

ĥ
ŷ
ĉ  1  1  h

1  n  s

    (4.1)

    (4.2)
    (4.3)
    (4.4)

    (4.5)

    (4.6)

    (4.7)

Calibration strategy:

Parameter to be calibrated Data Moment Needed Equation used to calibrate
 fraction of hours worked 4.5
 capital-output ratio 4.6
 GDP growth rate
k investment-output ratio 4.3
h fraction of time spent in education 4.4
 fraction of capital income on total income

(d) Household’s DPP:
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vk,h,b,K,H,A  max
k,b,n,s

 logc  1   log1  n  s  vk ,h,b,K,H,A 

s.t. c  k   qK,H,Ab  rK,H,Ak  wK,H,Anh  1  kk  b
h  1  hh  s
K  G1K,H,A
H  G2K,H,A
A   A  

    (5)

where b is the one-period contingent claim and qK,A is the contingent discount price.

Final goods producer:

max
K,L

AKL1  rK,H,AK  wK,H,AL     (6)

Note: I am using capital letters to denote firm’s choices.

Definition: A recursive competitive equilibrium for this economy is:

(i) A set of decision rules k k,h,b,K,H,A,bk,h,K,H,A,nk,h,b,K,H,A, sk,h,b,K,H,A

(ii) A set of decision rules KK,H,A,LK,H,A for the firm

(iii) Pricing functions rK,H,A,wK,H,A

(iv) Aggregate lawS of motion K  G1K,H,A and H  G2K,H,A

such that

(1) Given (iii) and (iv), (i) solves problem (5)

(2) Given (iii), (ii) solves problem (6)

(3) Markets clear:

L  nK,H, 0,K,H,AhK,H, 0,K,H,A
K  kK,H, 0,K,H,A
0  bk,h,K,H,A

By Walras’ law the output market also clears.

(4) Perceptions are correct:

k K,H, 0,K,H,A  G1K,H,A
1  hH  sK,H, 0,K,H,A  G2K,H,A

(e) A positive technology shock raises the marginal product of effective labor
("effective labor"  nh), hence it also raises the real wage rate per units of effective
labor. The amount of raw labor n will increase at the impact. Since the return on
education also increases, s will also increase. If my claimi is right, s is procyclical. Be
careful, however, because the technology shock is a random walk, which means the
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shocks are permanent. Therefore, a positive technology shock is equivalent to a
permanent income shock. Try to figure out the effects of a permanent increase in
income and check if my claim is right.

SPRING 2000 -QUESTION 2
(a) They are consistent with balanced growth path. In particular,

(i) the utility function is consistent with the empirical fact of an elasticity of substitution
between consumption and leisure close to 1

(ii) the production function is consistent with the empirical observation of constant
input shares

(b) To make the discussion clear, note that the steady state equations that
characterize the planner’s solution are:

Labor choice : Ah
1  h

 1   yc

Euler equation : 1   y
k
 1  

Law of motion of capital : ī  k

Resource constraint : c  ī  y

Calibration strategy:

Parameter to be calibrated Data Moment Needed Equation used to calibrate
A fraction of hours worked Labor choice
 capital-output ratio Euler equation
 investment-output ratio Law of motion of capital
 fraction of capital income on total income

As for the markov chain, assume that

P 
p1 1  p1
1  p2 p2

where p1 is the probability of the low state (recession) and p2 is the probability of high
state (boom).

Note that if p1  and p2  0, the invariant distribution is unique and equal to

1  p2
2  p1  p2

, 1  p1
2  p1  p2

In order to calibrate these two probabilities one could look at the times series of GDP
during recessions and booms and then estimate the persistence of each state. The
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probabilities p1 and p2 would them have to match the persistence of recessions and
booms, respectively.

Another way would be to approximate the solow residual zt by an AR(1) process, such
as zt1  1    zt   t1, where  is i.i.d. with zero mean and variance 2. One
could fit this equation by OLS or other estimation method and come up with estimates
for , and . Then one could approximate this AR(1) process by the two state
markov chain above. Use the conditional and uncondintional first and second
moments to calibrate zH, zL and p 1,p2:

Ez|z  zL  zLp1  1  p1zH  1    zL
Ez|z  zH  zHp2  1  p2zL  1    zH

Ez  zL
1  p2

2  p1  p2
 zH

1  p1
2  p1  p2

 

Varz  zL2
1  p2

2  p1  p2
 zH2

1  p1
2  p1  p2

 2
1  2

(c), (d) See Hansen’s HW4.

(e) It was shown in Hansen’s HW4 that the model with indivisible labor, lotteries, and
log utility implies the following type of preferences: uc, 1  h  logc  Bĥ, where
B   A log1  ĥ/ĥ and  is the probability of working.

Household’s DPP:

vK,k,b, z  max
k,b,

logc  Bĥ  EvK,k ,b, z

c  rK, zk  wK, zĥ  1  k  b  k   qK, zb

K  GK, z
z  zL, zH with transition matrix P

    (1)

where qK, z is the contingent price of the one-period contingent bond b.

Firm’s Problem:

max
kf,hf

ezk fhf1  rK, zkf  wK, zhf     (2)

Definition: A RCE for this economy is:

(1) A set of decision rules k K,k,b, z,bK,k,b, z and K,k,b, z for the household.

(2) A set of decision rules kfK, z and hfK, z for the firm.

(3) A set of pricing functions rK, z, wK, z and qK, z.

(4) An aggregate law of motion for capital GK, z.

such that
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(i) Given (3) and (4), (1) solves the household’s DPP.

(ii) Given (3), (2) solves the firm’s problem.

(iii) Markets clear:

kfK, z  K
hfK, z  K,K, 0, zĥ

bK,K, 0, z  0

(iv) Perceptions are correct:

k K,K, 0, z  GK, z

SPRING 2000 -QUESTION 3
(a) Planner’s DPP:

vK1,K2,A1,A2  max
N1,N2,K1 ,K2

A1K1N11  K2 
  1  A2K2N21  K1 

 
1


BN1  N2  EvK1 ,K2 ,A1 ,A2 

A1  1  1

A2  1  2

FOCs:

N1 : C1  1  C2 
1
 1C111  A1K1N1  B

N2 : C1  1  C2 
1
 11  C211  A2K2N2  B

K1 : C1  1  C2 
1
 11  C21  Ev1K1 ,K2 ,A1 ,A2 

K2 : C1  1  C2 
1
 1C11  Ev2K1 ,K2 ,A1 ,A2 

ECs:

K1 : v1K1,K2,A1,A2  C1  1  C2 
1
 1C11A1K11N11

K2 : v2K1,K2,A1,A2  C1  1  C2 
1
 11  C21A2K21N21

Substituting the ECs into the two last FOCs gives the following two euler equations:

1  C1  1  C2 
1
 1C11  E C11C1  1  C2 

1
 1A1 K11N11

C1  1  C2 
1
 1C21  E 1  C21C1  1  C2 

1
 1A2 K21N21

(b) The steady state system of equations is:
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C 1  1  C 2 
1
 1C 111  K 1N 1  B

C 1  1  C 2 
1
 11  C 211  K 2N 2  B

1  
  K 11N 11


1    K 21N 21

C 1  K 1N 11  K 1
C 2  K 2N 21  K 2

Check: 6 equations and 6 unknowns C 1,C 2,N 1,N 2,K 1,K 2.

(c) Household’s DPP:

vk1,k2,K1,K2,A1,A2  max
n,k1 ,k2 ,C1,C2

C1  1  C2 
1
  Bn 

Evk1 ,k2 ,K1 ,K2 ,A1 ,A2 

C1  k2  pK1,K2,A1,A2C2  k1   wK1,K2,A1,A2n  rK1,K2,A1,A2k1  k2
K1  G1K1,K2,A1,A2
K2  G2K1,K2,A1,A2
A1  1  1

A2  1  2

Remarks: (i) p is the relative price of the final good 2, (ii) I am assuming perfect factor
mobility.

Firm 1’s problem:

max
K1,N1

A1 K1
f 

N1
f 1

 rK1,K2,A1,A2K1
f  wK1,K2,A1,A2N1

f

Firm 2’s problem:

max
K2,N2

pK1,K2,A1,A2A2 K2
f 

N2
f 1

 rK1,K2,A1,A2K2
f  wK1,K2,A1,A2N2

f

Definition: A recursive competitive equilibrium for this economy is:

(i) A set of decision rules k1 k1,k2,K1,K2,A1,A2, k2 k1,k2,K1,K2,A1,A2,
C1k1,k2,K1,K2,A1,A2, C2k1,k2,K1,K2,A1,A2, nk1,k2,K1,K2,A1,A2 for the
household.

(ii) A set of decision rules K1
f K1,K2,A1,A2,N1

f K1,K2,A1,A2 for firm 1.

(iii) A set of decision rules K2
f K1,K2,A1,A2,N2

f K1,K2,A1,A2 for firm 2.

(iv) Pricing functions rK1,K2,A1,A2,wK1,K2,A1,A2 and pK1,K2,A1,A2.

(v) Aggregate laws of motion G1K1,K2,A1,A2,G2K1,K2,A1,A2
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such that

(1) Given (iv) and (v), (i) solves the household problem.

(2) Given (iv), (ii) solves the problem of firm 1.

(3) Given (iv), (iii) solves the problem of firm 2.

(4) Markets clear:

K1
f K1,K2,A1,A2  k1K1,K2,K1,K2,A1,A2

K2
f K1,K2,A1,A2  k2K1,K2,K1,K2,A1,A2

N1
f K1,K2,A1,A2  N2

f K1,K2,A1,A2  nK1,K2,K1,K2,A1,A2
C1K1,K2,K1,K2,A1,A2  A1K1N11  k1 K1,K2,K1,K2,A1,A2
C2K1,K2,K1,K2,A1,A2  A2K2N21  k2 K1,K2,K1,K2,A1,A2

(5) Perceptions are correct:

k1 K1,K2,K1,K2,A1,A2  G1K1,K2,A1,A2
k2 K1,K2,K1,K2,A1,A2  G2K1,K2,A1,A2

The planner solution coincides with the market solution because both welfare theorem
hold.

(d) Let p be the relative price of sector 2 output:

Yt  Y1t  pY2t
 A1tK1tN1t1  pA2tK2tN2t1

  logYt
 logA1t

 K1tN1t1  Y1t
A1t

 0

If the above computation is right, the macroeconomic impact of sectoral shocks does
not depend on  and . Try to check my solution because this result is quite
counterintuitive in my opinion.

FALL 2001 - QUESTION 2
(a)

(i) Planner’s DPP:

vk, z  max
k,n,c1,c2

nUc1, 1  ĥ  1  nUc2, 1  Evk , z

s.t. nc1  1  nc2  zFk,nĥ  1  k  k 

z~Gz, z

where n is the probability of working (or the fraction of people working), c1 is
consumption when employed and c2 is consumption when unemployed.
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(ii) System of equations that characterize the solution:

FOCs c1,c2 : U1c1, 1  ĥ  U1c2, 1
FOC n : Uc2, 1  Uc1, 1  ĥ  U1c1, 1  ĥ zF2k,nĥ  c1  c2

Euler equation : U1c1, 1  ĥ   U1c1 , 1  ĥ zF1k ,nĥ  1  

Resource constraint : nc1  1  nc2  zFk,nĥ  1  k  k 

(b)

(i) Planner’s DPP:

vk,k , . . . ,kJ1, z  max
kJ,h

Uc, 1  h  Evk ,k , . . . ,kJ, z

s.t. c  zFk,h  i

i  1
J P 

1
J P1 . . .

1
J PJ1 

1
J k

  k  . . .kJ  1J 1  k  k
 . . .kJ1

kJ  1  kJ1  P
z~Gz, z

(ii) System of equations that characterize the solution:

FOC h : U2c, 1  h  U1c, 1  hzF2k,h
Euler equation :

U1c, 1  h 1J  E
U1c , 1  h  EU1c , 1  h . . .J2EU1cJ1, 1  hJ1 1J 

J1EU1cJ, 1  hJzJF1kJ,hJ  1
J 1  

Resource contraint : c  zFk,h  1J 1  k  k
 . . .kJ1  1J k

  k  . . .kJ

FALL 2001 - QUESTION 4
(a) The consumer is indifferent between the two consumption streams if

E0
t0



t ct
1  1
1   

t0



t c t
1  1
1       (1)

Substituting for ct gives:

E0
t0



t ct
1  1
1    E0

t0



t
1  c tezt

1
2 z

2 1
 1

1  


t0



t
1  c t 1e1

1
2 z

2E0e1zt   1
1  

Given that z is i.i.d normally distributed, then e1z is i.i.d lognormally distributed with
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mean e12 12 z2 (see Casella and Berger for the relationship between the normal and
lognormal distributions). Therefore,

E0
t0



t ct
1  1
1   

t0



t 
1  c t 1e1

1
2 z

2e12 12 z2  1
1  


t0



t 
1  c t 1e1

1
2 z

2  1
1  

 1  1e1 12 z2
t0



t c t
1

1   
1

1  1       (2)

Substitute (2) into (1) to get:

1  1e1 12 z2
t0



t c t
1

1   
1

1  1   
t0



t c t
1  1
1  

1  1e1 12 z2
t0



t c t
1

1   
t0



t c t
1

1  

1  1  e 
2 z

2 1

1    e 
2 z

2

  exp z2
2  1

The coefficient of relative risk aversion  is usually estimated around 2. Additionally,
assuming that the stochastic process zt probably describes business cycles
fluctuations, we have that estimates of z for the US are small than 1 percent at a
quarterly basis. Therefore, the value of expz2/2 is only a little bit larger than 1. This
implies that  is very close to zero. The parameter  is the additional consumption
required by the agent to compensate for fluctuations in his consumption stream
because of business cycle volatility. Therefore, it is a measure of welfare cost of
business cycles. Since we concluded that  is very close to zero for reasonable
values of  and z then the Lucas’ claim that business cycles are not that costly might
be true.

(b)

E0
t0



t ct
1  1
1    E0

t0



t
1  c 0 exp s0

t zs  t
2 z

2 1  1
1  

 1  c 0 1
t0



t
exp 1   s0

t zs  t
2 z

2

1    1
1  1  

Because zt is independently distributed across time we have that exp 1  s0
t zs
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is lognormally distributed with mean exp1  2 t2 z
2 . Therefore,

E0
t0



t ct
1  1
1    1  c 0 1

t0



t
exp1  1   t2 z

2  t
2 z

2
1    1

1  1  

 1  c 0 1
1   

t0



e1
z2
2

t
 1
1  1  

 1  c 0 1

1   1  e1
z2
2

1  1
1  1  

Again, the consumer is indifferent if


t0



t c t
1  1
1    E0

t0



t ct
1  1
1  


t0



t c 0
1  1
1    1  c 0 1

1   1  e1
z2
2

 1
1  1  

c 01
1  1    1  c 0 1

1   1  e1
z2
2

1
1    1  1 1

1  e1
z2
2

1  1  1  e1
z2
2

1  

  exp z2
2

1  e1
z2
2

e1
z2
2 1  

1
1

 1

This result is different from (a) because not only the current shock but also the past
shocks affect the consumption stream. In another words, shocks are persistent. If the
term in the second brackets is larger than 1 (which for me is not that clear) then the
welfare cost of business cycles is bigger now.

FALL 2001 - QUESTION 5
(a) To begin with, note that apart from the technological progress both sectors use the
same production function (same f). Without loss of generality, assume that the
production function f is Cobb-Douglas, with capital share  and labor share 1  . The
variables that must be detrended are: k,km,kh,cm,ch. First, note that aggregate capital
is produced by the market technology and then allocated to each sector. Therefore,
along the BGP the stock of capital in both sectors must be growing at the same rate.
Additionally, consumption in the market sector must grow at the same rate as the
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aggregate stock of capital. Call this rate gm.

Use to resource constraint for the market sector and the properties of constant returns
to scale technology to pin down this rate:

cmt  kt1  zmtfkmt,Xmtlmt  1  kt
cmt  kt1  zmtkmtXmtlmt1  1  kt

gmt ĉmt  gmt1k t1  zmt gmt kmt

etmlmt1  1  gmt k t

ĉmt  gmk t1  zmtgm1e1m 
tkmt lmt1  1  k t

This equation is stationary if

gm  em     (1)

In this case we have:

ĉmt  emk t1  zmtf kmt, lmt  1  k t     (2)

Now lets pin down the growth rate of ch. Call this rate gh. Using the resource constraint
for the home sector we get:

cht  zhtfkht,Xhtlht

cht  zht Xmtk ht

Xhtlht1

This expression implies that the technological progress in the home sector is both
"capital-augmenting" and "labor-augmenting". Because the production function is
constant returns to scale, we can combine the factors Xm and Xh into one single factor
X  expM  1  h, which is sometimes referred to as "TFP-augmenting"
technological progress:

ght ĉht  zhtXt k ht lht1

ĉht  zht eM1h
gh

t
k ht lht1

This equation is stationary if

gh  eM1h     (3)

Note that the growth rate of ch is a weighted average of the technological progress in
each sector. The intution is that the home sector is benefited by its own technogical
progress and by the technological progress in the market sector embodied in the
capital stock.

The stationary resource constraint in the home sector is:
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ĉht  zhtfk ht, lht     (4)

Finally, lets adjuste the lifetime utility:

U  E0
t0



t logcmt  1   logcht  B log1  lmt  lht

 E0
t0



t loggmt ĉmt  1   logght ĉht  B log1  lmt  lht

 E0
t0



t logĉmt  1   logĉht  B log1  lmt  lht  
t0



tt loggm  1  
t0



tt loggh

 E0
t0



t logĉmt  1   logĉht  B log1  lmt  lht 


1  2
 loggm  1   loggh

From now on we can ignore the constant term.

Using the previous equations, we can write down the planner’s DPP as follows:

vk, zm, zh  max
k ,km,lm,lh

 logĉm  1   logĉh  B log1  lm  lh  Evk , zm , zh 

s.t. ĉm  zmf km, lm  1  k  emk 

ĉh  zhf k  km, lh

zm  1    zm1  m
zh  1    zh1  h

(b) I guess there is a mistake in the question. Where you read "are also necessary
conditions" we should read "are also sufficient conditions". Since the objective function
is strictly concave we require the opportunity sets to be convex for the FOCs to be
also sufficient conditions for a maximum. The shape of the opportunity sets depend on
the assumption you make for the production functions. One sufficient assumption
would be that both production functions are concave in each argument, for example
the Cobb-Douglas case.

The planner’s FOCs are:
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lm : B
1  lm  lh


zmf2 km, lm

ĉm

lh : B
1  lm  lh


1  zhf2 k  km, lh

ĉh

km :
zmf1 km, lm

ĉm

1  zhf1 k  km, lh

ĉh

k  : e
m

ĉm
 E 1  

ĉm

1  zh f1 k   km , lh

ĉh

(c) Household’s DPP:

vK ,k, zm, zh  max
k ,l,ĉh

 logĉm  1   logĉh  B log1  l  EvK ,k , zm , zh 

s.t. ĉm  wK , zm, zhl  rK , zm, zhk  1  k  emk   pK , zm, zhĉh
K   GK , zm, zh
zm  1    zm1  m
zh  1    zh1  h

    (5)

where p is the relative price of the home consumption good. Note: I am assuming that
there is perfect mobility of factors across sectors so that the wage rate and the rental
rate of capital are the same in both sectors.

Home consumption goods producer:

max
K h,Lh

pK , zm, zhzhf K h,Lh  wK , zm, zhLh  rK , zm, zhK h     (6)

Market goods producer:

max
K m,Lm

zmf K m,Lm  wK , zm, zhLm  rK , zm, zhK m     (7)

Note: I am using capital letters to denote firms’ choice variables.

Definition: A recursive competitive equilibrium for this economy is:

(i) Decision rules k K ,k, zm, zh, lK ,k, zm, zh,ĉhK ,k, zm, zh for the household

(ii) Decision rules K hK , zm, zh,LhK , zm, zh for the home consumption goods producer

(iii) Decision rules K mK , zm, zh,LmK , zm, zh for the market goods producer

(iv) Pricing functions wK , zm, zh, rK , zm, zh,pK , zm, zh

(v) An aggregate law of motion K   GK , zm, zh

such that

(1) Given (iv) and (v), (i) solves problem (5)
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(2) Given (iv), (ii) solves problem (6)

(3) Given (iv), (iii) solves problem (7)

(4) Markets clear:

lK ,K , zm, zh  LmK , zm, zh  LhK , zm, zh
K  K mK , zm, zh  K hK , zm, zh

ĉhK ,K , zm, zh  zhf K hK , zm, zh,LhK , zm, zh

By Walras’ law the market goods also clears.

(5) Perceptions are correct:

k K ,K , zm, zh  GK , zm, zh

(d) Overall, the economy is more volatile with   1/2 than with   1. In the latter case
the home sector is active and the aggregate economy is hit by two different shocks.
Moreover, the household has more margins for substitution. For example, if there is a
positive shock in the home sector and a negative shock in the market sector, then
resources will be reallocated to the sector with the positive shock. If the economy has
only one active sector (case of   1) this cross sector substitution becomes
impossible. I leave the details of what happens with each variable to you.

SPRING 2001 - QUESTION 1
(a) Planner’s DPP:

vK,  max
K,H

C1  H1 1  1
1    vK,

s.t. C  K  1KH1  1  K
  

This problem is well defined if   1.

(b) From the resource constraint you can figure out that along the BGP all variables
grow at the same and constant rate g  . I leave to you the full characterization of the
BGP.

(c) First, find the equations that characterize the BGP steady state of the economy:
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Production Function : Ŷ  K H1

Resource Constraint : Ĉ  Î  Ŷ
Law of Motion of Capital : Î      1K

Labor Choice : 1   H
1  H  1   Ŷ

Ĉ

Euler Equation :     Ŷ
K
 1  

Note: I am using hat to denote stationary variables.

The quarterly data we have are:

(i) : gy  1.0141/4  1.0035
(ii) : gn  1.0151/4  1.0037

(iii) : rK
Ŷ

 0.4

(iv) : Î
Ŷ
. 25

(v) : K
Ŷ

 4  3.5  14

(v) : H . 31
(vi) :   1.5

The parameters we need to calibrate are: ,,,,,. Note that , and  are
calibrated directly from facts (i), (ii) and (iii), respectively:

  1.0035
  1.0037
  0.4

To calibrate  use the law of motion of capital and facts (iv) and (v):

  Î
K
 1    Î/Ŷ

K /Ŷ
 1    . 25

14  1  1.00351.0037  0.010644

Use the values of , and , fact (v) and the euler equation to calibrate  :

 


 Ŷ
K
 1  

 1.0035
.4 1

14  1  0.010644
 0.98583

Finally, to calibrate  use (v) and the labor choice equation:
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  H/1  H
1   Ŷ

Ĉ
 H/1  H

 H
1  1  H 1

1Î/Ŷ
 H

 . 31
0.6 . 69  1

.75 . 31
 0.35963

SPRING 2001 - QUESTION 2
(a) The problem solved by country i is:

max
t0



it logkit  1  kit  kit1, i  1,2

The capital euler equation for country i is:
cit1
cit  ikit11  1  , i  1,2

In steady state we have:

1
i

 MPki  1    Ri, i  1,2

where Ri is the return on capital and MPki is the marginal product of capital in country
i.

Solving for the per capita capital k i and per capita income y i:

k i  
1/i  1  

1
1
, i  1,2

y i  
1i  1  


1
, i  1,2

If there is no capital mobility, each produces and consumes in autarky. Using the
parameter values we get:

k 1  6. 0858
k 2  2. 5201
y 1  1. 8257
y 2  1. 3608

Note that although the technology is the same, country 1 managed to accumulate
more capital and get a higher per capita income because it is more patient (higher
discount factor). Also note that the steady state marginal product of capital and hence
the return on capital is higher in country 2:

1.02  R1  MPk1  1    MPk2  1    R2  1.10

(b) With perfect capital mobility, the low-return country 1 can export some of its capital
to the high-return country 2. The capital outflow will raise the marginal product of
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capital in country 1, and the capital inflow will reduce the marginal product of capital in
country 2. This process continues until the return of capital is the same in both
countries, that is until

R1  R2  R

where R is the common rate of return in steady state.

The problem solved for country i is now given by:

max
t0



it logkit  1  kit  kit1  bit1  Rtbit, i  1,2

where bi denotes imports of capital (if positive) or exports of capital (if negative).
Obviously,

b1  b2  0  b2  b1

Now we have 2 eulers equation for country i:
cit1
cit  ikit11  1  , i  1,2
cit1
cit  iRt, i  1,2

In steady state we have

1  ik i1  1  , i  1,2

1  iR, i  1,2

    (1)

    (2)

From the above argument we know that

k 11  1    k 21  1    R

Hence, equations (1) and (2) collapse to just one condition:

1
i

 R, i  1,2     (3)

The problem is that equation (3) cannot hold simultaneously because the discount
factors are different. This leaves us with three possible situations:

i : 1
1

 R  1
2

ii : 1
1

 R  1
2

iii : 1
1

 R  1
2

Note that these three cases compare the marginal rate of substitution (or marginal
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cost) of each country 1/ to the return on capital (or marginal benefit) R. We can
dismiss (i) and (ii) because they imply that country 2 will accumulate too much capital.
Besides violating the TVC, this would drive the marginal product of capital in this
country to zero. Hence, country 2 would be better off by exporting some capital to
country 2. Therefore, (iii) must be the equilibrium. The intuition is that country 1 will
accumulate enough capital to afford its own consumption and investment and still
borrow some of its capital to country 2. Since country 2 is less patient it will not
accumulate any capital (zero investment). Instead, it will borrow from country 2 all the
capital it needs and will use this capital to produce its own consumption and to pay
back the capital borrowed plus the return R. In the limit, country 1 will own the entire
capital of the world and country 2 will own nothing. However, because of trade both
countries can consume more and are better off than in autarky.

Since the euler equation holds for country 1 we have:

1
1

 k 11  1    k 1  
1/1  1  

1
1

 6. 0858

This implies that the marginal product of capital is

r  0.10

Because country 2 does not accumulate capital we have:

k 2  0

The capital account is given by:

k 1  b 1  k 2  b 2  k 2  b 1

 b 1   k
 1
2

 b 2  k 1
2

Also,

y 1  GDP1  k 1  1. 8257
GNP1  GDP1  rb 1  1. 8257  0.103.0429  2. 1300

y 2  GDP2  k 1
2



 1. 4491

GNP2  GDP2  rb 2  1. 4491  0.103.0429  1. 1448

(c) Capital mobility reduces per capita GNP for country 2 from 1. 3608 to 1. 1448. (note
that GNP  GDP in autarky), although it improves per capita GDP, and its share of
world’s output from 1.3608/1.3608  1.8257 . 427 to 1. 4491/1.
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4491  1.8257 . 4425.

SPRING 2001 - QUESTION 5
(a) To begin with, note that the transition matrix assumed here implies that the shocks
are not only independently but also identically distributed. The joint distribution of
shocks (conditional and unconditional) is:

Pr   i, zm  zmj , zh  zhk  0.53  0.125

where
i, j,k  H,H,H, H,H,L, H,L,H, H,L,L, L,H,H, L,H,L, L,L,H, L,L,L, H 
high and L  low.

Instead of writing down the planner’s DPP, in which we have to deal with 8 value
functions, it is easier to set up the sequential problem:

maxE0
t0



t tzmtlmttzhtlht1  Blmt  lht

 max
t0



t
i,j,k

Pr   i, zm  zmj , zh  zhk i zmj lmj

zhk lhk 

1  B lmj  lhk

Given   i, zm  zmj , zh  zhk , the FOCs are:

lmj : B 
 i zmj lmj


zhk lhk 

1

lmj

lhk : B 
1  i zmj lmj


zhk lhk 

1

lhk

These imply:


1    lmj

lhk

Combine this equation with the time constraint lmj  lhk  1 to get:

lmj  

lhk  1  

(b), (c) The time spent working in each sector is constant, regardless the aggregate
and sectoral shocks. However, sectoral consumption responds to both shocks.

FALL 2002 - QUESTION 1
(a) Suppose there is a benevolent social planner that maximizes the welfare of the
representative agent. Let n be the fraction of employed agents. The planner will
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maximize the following weighted average utility function:

Uc1,c2,n  n
c11  h1

1  1
1    1  n c2

1  011  1
1  

 n
c11  h1

1  1
1    1  n c2

1  1
1  

where c1 is the consumption of employed agents, and c2 is the consumption of
unemployed agents. Note that total hours worked are H  nh .

The aggregate resource constraint is:

nc1  1  ntc2  K  ezKnh 1  1  K     (1)

Bellman equation:

vK, z  max
K,n,c1,c2

n
c11  h1

1  1
1    1  n c2

1  1
1    EvK, z

nc1  1  nc2  K  ezKnh 1  1  K

z  zz  

(b) Combining the FOCs with respect to c1 and c2 gives:

c2
c1  1  h

11
11     (2)

The FOC with respect to n is:

1  c2c1   1
1   

1  ezKnh 1
nc1     (3)

Combining the FOC with respect to K and the EC yields the following capital euler
equation:

1  E c1
c1

11
ezK1nh 1  1       (4)

The solution to the planner’s problem is characterized by equations (1)-(4).

(c) The answer depends of the size of the coefficient of risk aversion . Using
equation (2) we have the following relevant cases:

  1  c1  c2
  1  c1  c2

(d) Without loss of generality assume   1 (You can try the other case as well). This
implies the following utility function (see Hansen’s HW 4):
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U   logct  nt1   log1  h

  logct  Anth  where A   1   log1  h


h
  logct  AHt where Ht  nth

Now, the dynamic system of equations is given by:

Production function : yt  eztKtHt 1

Resource constraint : ct  Kt1  yt  1  Kt
Labor euler equation : A  1   yt

ctHt

Capital euler equation : 1  Et ct
ct1  yt1Kt1

 1  

This system of equations determine ct,Ht,Kt and yt. Let bar variables denote steady
states, and let hat variables denote log deviations from the steady state. Taking this
into account and using the log linearization rules, we obtain the following log-linearized
system:

0  ŷ t  zt  K t  1  Ĥt

0  ŷ t  1   K

y K
 t  cy ct 

K
y K
 t1

0  ŷ t  ĉ t  Ĥt

0  Et ĉ t  ĉ t1  
y
K
ŷ t1  K t1

    (5.1)

    (5.2)

    (5.3)

    (5.4)

(e) Note that the first three equations can be used to solve for ŷ t,Ĥt and ĉ t in terms of
K t,K t1 and zt. Using matrix notation:

1 0 1  
1  cy 0

1 1 1

ŷ t
ĉ t
Ĥt



zt  K t
K
y K t1  1  

K
y K t

0

This subsystem of equations has a solution as long as the matrix

1 0 1  
1  cy 0

1 1 1

is invertible. This matrix is the CC matrix in Uhlig’s program. That’s why Uhlig’s
program requires the CC matrix be full rank and therefore invertible. After you solve
this subsystem, you plug the solution into the euler equation. This procedure simplifies
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a lot the solution because we end up with just one stochastic difference equation that
we can handle using the method of undetermined coefficients (MUC).

To illustrate once more how MUC works, I will solve the problem step by step I guess
you don’t have to do this in the exam). First, lets compute the solution for the
subsystem (5.1)-(5.3). If you work on the algebra a little bit you will get (warning:
always check the algebra because I usually get it wrong):

Ĥt  1
1   ī

y

K
y K
 t1  ī

y zt   īy  1  
K
y K t

ĉ t  1
1   ī

y
 Ky K

 t1  zt   1  1   K

y K t

ŷ t  1
1   ī

y
1   Ky K

 t1  cy zt   cy  1  1  
K
y K t

where c/y is the steady state consumption-output ratio, ī/y is the steady state
investment-output ratio, and K /y is the steady state capital-output ratio.

To economize on notation, rewrite the above system as follows:

Ĥt  h1zt  h2K t  h3K t1
ĉ t  c1zt  c2K t  c3K t1
ŷ t  y1zt  y2K t  y3K t1

    (6.1)
    (6.2)
    (6.3)

where

h1 
ī/y
1   ī

y
;h2  1

1   ī
y

 īy  1  
K
y ;h3 

K /y
1   ī

y

c1  1
1   ī

y
;c2  

1   ī
y
1  1   Ky ;c3 

K /y
1   ī

y

y1 
c/y

1   ī
y
;y2  1

1   ī
y

 cy  1  1  
K
y ;y3 

1  K /y
1   ī

y

Substitute (6.1)-(6.3) into the capital euler equation:

0  Et c1zt  zt1  c2 K t  K t1  c3 K t1  K t2   y
K
y1zt1  y2K t1  y3K t2  K t1

 Et 1zt  2zt1  3K t  4K t1  5K t2     (7)

where
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1  c1

2   y
K
y1  c1

3  c2

4   y
K
y2  1  c3  c2

5   y
K
y3  c3

Conjecture that the law of motion of capital is of the form:

K t1  1zt  2K t     (8)

Substitute this conjecture and the law of motion of z into (7):

0  Et 1zt  2zt   t1  3K t  4 1zt  2K t  5 1zt1  2K t1
 1  2  14  5  25zt  3  24  52K t

  #   

    (9)

This equation holds in all t if

1  2  14  5  25  0
3  24  52  0

Note that we are using the MUC here because (9) is equivalent to:

0zt  0K t  1  2  14  5  25zt  3  24  52K t

Solving for 1 and 2 gives:

2  1
25

4  4  435

1  
1  2

4  5  2

In the case of the growth model, the solution is usually a saddle path. This means that
both 2 are real, but one lies inside the unit circle and the other lies outside the unit
circle (in absolute value). It is at this point that the TVC comes into play. The TVC
requires that you pick up the 2 that is smaller than one in absolute value. This
ensures that the law of motion of capital (8) is not explosive.

(f) The planner’s problem can be decentralized if we assume that workers trade
lotteries specifying the probability of work. This lottery (remember that it is equivalent
to unemployment insurance) is the additional commodity. See Hansen’s HW4 for the
decentralization.

FALL 2002 - QUESTION 2
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(a) The household solves the following dynamic programming problem:

vK,k  max
c,k

uc  vK,k 

s.t. c  wK  rKk  qKk   1  k
K  GK

    (1)

where q is the relative price of investment goods.

The consumption goods producer solves the following problem:

max
K1t
f ,H1t

f 
F1 K1

f ,H1
f  rKK1

f  wKH1
f     (2)

The investment goods producer solves the following problem:

max
K2
f ,H2

f 
qKF2 K2

f ,H2
f  rKK2

f  wKH2
f     (3)

A recursive competitive equilibrium for this economy is:

(i) A set of policy functions k K,k and cK,k for the household

(ii) A set of decision rules K1
f K and H1

f K for the consumption goods producer

(iii) A set of decision rules K2
f K and H2

f K for the investment goods producer

(iv) Pricing functions rK, wK and qK

(v) A law of motion for the aggregate state K  GK

such that

(1) Given (iv) and (v), (i) solves the household problem (1)

(2) Given (iv), (ii) solves the problem of the consumption goods producer (2)

(3) Given (iv), (iii) solves the problem of the investment goods producer (3)

(4) Markets clear:

Labor market: H1
f K  H2

f K  1

Capital market: K1
f K  K2

f K  K

Investment goods market:
k K,K  1  K  F2K2

f K,H2
f K

Consumption goods market: cK,K  F1K1
f K,H1

f K

(5) Perceptions are correct:

k K,K  GK

(b) With adjustment costs we have that capital become sector specific. The state
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variables are K1,K2 and K11 ,K21. Define K  K1,K2 and K1  K11 ,K21. (Note
that the adjustment cost is in units of the consumption goods).

Household’s problem:

vK,K1,k,k1  max
c,k1 ,k2

uc  vK,K,k ,k

s.t. c  w1K,K1  w2K,K1  r1K,K1k1  r2K,K1k2

 qK,K1k1  k2  1  k1  k2  h
k1
k11

 k2
k21

K1  G1K,K1
K2  G2K,K1

    (4)

Consumption goods producer problem:

max
K1t
f ,H1t

f 
F1 K1

f ,H1
f  r1K,K1K1

f  w1K,K1H1
f     (5)

Investment goods producer problem:

max
K2
f ,H2

f 
qK,K1F2 K2

f ,H2
f  r2K,K1K2

f  w2K,K1H2
f     (6)

A recursive competitive equilibrium for this economy is:

(i) A set of policy functions k1 K,K1,k,k1,k2 K,K1,k,k1 and cK,K1,k,k1 for the
household

(ii) A set of decision rules K1
f K,K1 and H1

f K,K1 for the consumption goods
producer

(iii) A set of decision rules K2
f K,K1 and H2

f K,K1 for the investment goods producer

(iv) Pricing functions r1K,K1, r2K,K1,w1K,K1, w2K,K1 and qK,K1

(v) Laws of motion for the aggregate states K1  G1K,K1 and K2  G2K,K1

such that

(1) Given (iv) and (v), (i) solves the household problem (4)

(2) Given (iv), (ii) solves the problem of the consumption goods producer (5)

(3) Given (iv), (iii) solves the problem of the investment goods producer (6)

(4) Markets clear:

Labor market: H1
f K,K1  H2

f K,K1  1

Capital market: K1
f K,K1  K1 and K2

f K,K1  K2

Investment goods market: K1  K2  1  K1  K2  F2K2
f K,K1,H2

f K,K1
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Consumption goods market:
cK,K1,K,K1  h K1

K11
 K2

K21
 F1K1

f K,K1,H1
f K,K1

(5) Perceptions are correct:

k1 K,K1,K,K1  K1  G1K,K1
k2 K,K1,K,K1  K2  G2K,K1

FALL 2002 - QUESTION 5
(a) First, it is convenient to make the model stationary. The procedure here will differ a
bit from the standard one-sector growth model because we have two types of
technological progress. Therefore, we cannot expect that all variables will grow at the
same rate along the BGP. Lets conjecture that along the BGP consumption will grow
at the rate gc and investment, hence capital as well, will grow at the rate gi.

Conjectures:

It  1  gi tÎt; Kt  1  gi tK t; Kit  1  gi tK it; Kct  1  gi tK ct
ct  1  gc tĉ t

    (1)
    (2)

where the hat denote stationary variables.

Lets start with the capital goods sector. Since labor must be already stationary, we
have:

It  1  i t1vAiKitvNit1v

1  gi tÎt  1  i t1vAi 1  gi tK it
vNit1v

1  gi tÎt  1  i1v1  giv
tAiK itvNit1v

Ît  1  i1v1  giv1
tAiK itvNit1v

This equation is stationary if

1  i1v1  giv1  1  gi  i

Therefore,

Ît  AiK itvNit1v

Now, lets use the law of motion of capital to make sure the growth rate of capital is
indeed gi:
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It  Kt1  1  Kt
1  gi tÎt  1  gk t1K t1  1  1  gk tK t

Ît 
1  gk
1  gi

t
1  gkK t1  1  

1  gk
1  gi

t
K t

This equation is stationary if

1  gk
1  gi

 gi  gk  i

Therefore,

Ît  1  gkK t1  1  K t

Note that, since both Kt and Kit are growing at the same rate, then the stock of capital
in the consumption goods sector Kct must be growing at the same rate as well. Thus
conjecture (1) is correct.

Lets verify conjecture (2):

ct  1  c t1AcKct Nct1

1  gc tĉ t  1  c t1Ac 1  i tK ct
Nct1

1  gc tĉ t  1  c11  i
tAcK ct Nct1

ĉ t  1  i1  c11  gc1
tAcK ct Nct1

This equation is stationary if

1  gc  1  i1  c1  gc  1  i1  c1  1

The growth rate of consumption is a weighted average of the technological progress in
each sector. Finally, note that preferences also change when we detrend the model:

U 
t0



tlogct  Ant


t0



tloggct ĉ t  Ant


t0



tlogĉ t  Ant 
t0



gc t

Assuming that gc  1 we have:

U 
t0



tlogĉ t  Ant  1
1  gc
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Without loss of generality we can ignore the constant term.

Planner’s sequential problem:

max
t0



tlogĉ t  ANct  Nit

s.t. ĉ t  AcK ct Nct1

Ît  1  i K ct1  K it1  1   K ct  K it  AiK itvNit1v

    (3)

The FOCs are:

1  AcK ct Nct  1  vAiK itvNitv

AcK ct1Nct1  vAiK itv1Nit1v

1  i ĉ t1ĉ t
  vAiK it1v1Nit11v  1  

    (3.1)
    (3.2)

    (3.3)

Equations (3.1) and (3.2) show that the marginal products of labor and capital are
equal across sectors. This must be true since there is no impediment to perfect
mobility. Equation (3.3) is the usual capital euler equation.

In the decentralized economy, we have the following decision problems:

Household’s sequential problem:

max
t0



tlogĉ t  Ant 

s.t. ĉ t  wtnt  rtk t  qt 1  ik t1  1  k t

    (4)

Consumption goods producer:

max
K ct,Nct

AcK ct Nct1  wtNct  rtK ct     (5)

Capital goods producer:

max
K it,Nit

qtAiK itvNit1v  wtNit  rtK it     (6)

Definition: a competitive equilibrium for this economy is an allocation
ĉ t,nt,k t,Nct,Nit,K ct,K it t0

 and prices wt, rt,qtt0
 such that:

(i) Given prices, the household solves problem (4)

(ii) Given prices, the consumption goods producer solves problem (5)

(iii) Given prices, the capital goods producer solves problem (6)

(iv) Markets clear:
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k t  K it  K ct
nt  Nit  Nct

AcK ct Nct1  ĉ t
AiK itvNit1v  1  ik t1  1  k t

Note: this definition is slightly different from the recursive competitive equilibrium that
we are used to.

(b) There exists a steady state even if consumption and investment grow at different
rates. Since there are no distortions, it is easier to analyze the steady state by looking
at the planner’s solution. The equations that characterize the planner’s solution in
steady state are:

1  


K c
Nc

 1  v
v

K i
Ni

1  i   vAiK iv1Ni1v  1  

ĉ  AcK cNc1

AiK ivNi1v  i   K c  Ki
N  Nc  Ni

where the first equation is just the combination of (3.1) and (3.2), the second is the
euler equation, and the remaining are just the resource constraints. These 5 equations
determine the 5 unknowns: c,Nc,N i,K c,K i. (If you work on the algebra a bit you can
get the explicit solutions for each variable).

(c) Given that marginal products are equal to input prices in both sectors, the FOCs for
the firms imply:

qvAiK iv1Ni1v  r  AcK c1Nc1

q1  vAiK ivNiv  w  1  AcK cNc

Therefore,

q  AcK c1Nc1

vAiK iv1Ni1v
 1  AcK cNc

1  vAiK ivNiv
    (7)

(d) Since the ratio of marginal products (7) is not affected by the tax rate, I guess the
price of capital will not change in the long run.

(e) Suppose the tax is imposed in period T. From this period on the household’s
budget constraint changes to:

1  ĉ t  wtnt  rtk t  qt 1  ik t1  1  k t  Rt,t  T
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where  is the consumption tax rate and R is the tax rebate.

To gain intuition, let t be the lagrange multiplier on the houshold’s budget constraint.
The FOC for consumption in period t  T is:

uct  t1  

The left-hand side is just the marginal utility of consumption. The right-hand side is the
shadow price of consumption. This shadow price increases with the tax, which
discourages consumption. Try to figure out what happens with the other variables.

SPRING 2002 - QUESTION 1
(a)

Bellman equation:

vk1,K,J  max
k

pfk  Jk  k1  d2 k  k1
2  Evk,K,J 

s.t. J   J  

p  a  bfK  u
K  GK,J ,u
u  i. i.d with zero mean

    (1)

  #   

(b) A Recursive competitive equilibrium for this industry is:

(i) A policy function k  kk1,K,J,u

(ii) Exogenous prices p and J

(iii) An industry wide stock of capital GK,J ,u

such that

(1) Given (ii) firms solve problem 1

(2) Capital market clears:
K  Nk

(3) Firm’s predictions are correct:

GK,J ,u  Nk 

(c) The FOC with respect to k is:

J  dk  k1  pf  Ev1k,K,J 

The envelope conditions is:

v1k1,K,J  J  dk  k1  v1k,K,J   J   dk   k

34



Substituting the EC into the FOC gives:

J  dk  k1  pf  EJ   dk   k
 pf  J  dEk   k

Now use the equilibrium condition K  Nk to obtain:

J  d K
N 

K1
N  pf  J  d E K

N  KN

After rearranging terms and substituting for p we get the following euler equation:

Et Kt1  2  Nbf
2

d Kt  Kt1  1   Nd Jt 
Nf
d ut  a

Nf
d  0     (2)

This is a linear stochastic second-order difference equation.

To characterize the solution, a reasonable conjecture would be

Kt  0  1Kt1  2Jt  3ut     (3)

Substitute the conjecture (3) and the law of motion of J in (2) to get:

0  0 1  1 
Nbf2
d  a Nfd  1  1 1  2 

Nbf2
d Kt1 

2 1    2 
Nbf2
d  1   Nd Jt 

Nf
d  3 1  2 

Nbf2
d ut

By MUC, a solution to this equation must satisfy

0 1  1 
Nbf2
d  a Nfd  0

1  12  1 2 
Nbf2
d  0

2 1    2 
Nbf2
d  1   Nd  0

Nf
d  3 1  2 

Nbf2
d  0

    (4.1)

    (4.2)

    (4.3)

    (4.4)

Use (4.2) to solve for 1:

1  1
2 2  Nbf

2

d  2  Nbf
2

d

2
 4

 1  Nbf
2

2d  1  Nbf
2

2d

2
 1

We can verify that both solutions are real and positive. Additionally, one solution is
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larger than one and the other is smaller than one. To satisfy the TVC pick up the
solution smaller than one:

1  1 
Nbf2
2d  1  Nbf

2

2d

2
 1

Given this solution for 1, we can back up the other parameters:

0 
aNf

d1  1  Nbf2
 0

2 
1  N

d2  1    Nbf2
 0

3 
Nf

d2  1  Nbf2
 0

Note that the sign of these last three parameters make economic sense. First, we can
interpret 0 as the average or the long-run stock of capital, which is positive. Second,
2 implies a negative relationship between the price of capital and the demand for
capital, as expected. Finally, 3 implies that the capital stock is positively affected by
demand shocks, that is, when the price of output goes up the demand for capital also
goes up, and vice-versa.

SPRING 2002 - QUESTION 2
(a) First, get the per capita variables. Using the resource constraint:

ct  1  kt1  tktlt
1

The small letters denote per capita variables. Note that lt  1/1   t, then

ct  1  kt1  tkt

where t  1  1 t.

Also, note that the discount factor becomes 1  . We need the condition that
1    1.

The Bellman equation for the social planners is:

vk,  max
K
logk  1  k   1  vk ,

s.t.   1  1 

(b) Along the BGP all variables grow at the same and constant rate g.
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ct  gtĉ t
kt  gtk t
yt  gtŷ t

The hat variables denote the BGP levels of consumption, capital and output. These
variables are stationary and have a well defined steady state. Use the resource
constraint to pin down the growth rate:

gtĉ t  1  gt1k t1  t gtk t


ĉ t  1  gk t1  tg1tk t

This is stationary if

tgt  1  1  1g1 t  1  g  
1  1

1
1

Therefore, along the BGP consumption grows according to

ct1
ct 


1  1

1
1

There is an equivalent way to pin down the growth rate of consumption. Remember
that CRRA utility functions are consistent with BGP. The log utility is just a special
case of CRRA. This means that we can use the euler equation to pin down g. The
euler equation for the planner’s problem is:

ct1
ct  t1kt11

Along the steady state BGP we have ct  gtc and kt  gtk. Hence,

g  t1g1t1k 1

The LHS is already stationary. The RHS is stationary if t1g1t1  1, which gives
the same growth rate we got before.

(c) Let q be the price of land, and let v,w and r be the rental rate of land, labor and
capital, respectively. I will define the equilibrium in terms of each household member.
You could also do it for the entire household.

The household budget constraint is in per capita terms is:

ct  kt1  qtlt1  lt   wt  rtkt  vtlt

The term lt1  lt denotes net investment on land (land purchases).
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The Bellman equation for each household member is:

vk, l,K,,N  max
k,l

logc  vk , l ,K,,N

s.t. c  wK,,N  rK,,Nk  vK,,Nl  k   qK,,Nl 

K  GK,,N
  

N  1  N

    (1)

The firm’s problem is:

max
Kf,Nf,Lf

KfNfLf1  vK,,NLf  wK,,NNf  rK,,NKf     (2)

A recursive competitive equilibrium for this economy is:

(1) A set of policy functions k k, l,K,,N, l k, l,K,,N and ck, l,K,,N for each
member of the household

(2) A set of policy functions for the firm KfK,,N,NfK,,N and LfK,,N

(3) Princing functions vK,,N,wK,,N, rK,,N and qK,,N

(4) A law of motion for the aggregate endogenous state K  GK,,N

(5) A law of motion for the aggregate exogenous state   

such that

(i) Given (3), (4), and (5) each member of the household solves problem (1)

(ii) Given (3), (4), and (5) the firm solves problem (2)

(iii) Markets clear (for completeness I list all markets below):

Labor Services : Nf  N

Land Services : Lf  Nl K, 1N ,K,,N  1

Capital Services : Kf  Nk K, 1N ,K,,N  K

Land : l  K, 1N ,K,,N  l K, 1N ,K,,N   
1  N

Output : Nc K, 1N ,K,,N  GK,  KfK,,NN

(iv) Aggregate consistency:

k  K, 1N ,K,,N  GK,,N

l  K, 1N ,K,,N  1
1  N
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SPRING 2002 - QUESTION 6
(a) I interpret the parameter  as a preference shock, in particular a shock to leisure
(or to the supply of labor).

(b) To characterize the recursive competitive equilibrium let us first write down the
Bellam equation for the representative consumer:

vK,k,  max
l,i

wK,l  rK,k  i    l
2

2  Ev1  K  I, 1  k  i, 

s.t. I  IK,
   0 is a random shock with some probability distribution

    (1)

Note: Be careful when preferences are linear or quasi-linear. In the present case,
preferences are linear in consumption, which means that there can be corner
solutions. Let R   r  1   denote the return on capital between today and tomorrow,
and let MRSc,c  1/ denote the marginal rate of substitution between consumption
today and consumption tomorrow. Note that consumption today and consumption
tomorrow are perfect substitutes (linear indifference curves). Then the following three
cases are possible:

MRSc,c  R   c  wl  rk  i  0

MRSc,c  R   c  0  i  wl  rk

MRSc,c  R   c  0,wl  rk  i  wl  rk, 0

The firm’s problem is:

max
kf,lf

Akflf1  wK,lf  rK,kf     (2)

A recursive competitive equilibrium for this economy is:

(1) A set of policy functions lK,k, and iK,k, for the household

(2) A set of policy functions lfK, and kfK, for the firm

(3) Pricing functions wK, and rK,

(4) An aggregate decision rule IK,

such that

(i) Given (3) and (4) the household solves problem (1)

(ii) Given (3) the firm solves problem (2)

(iii) Markets clear:

lfK,  lK,K,
kfK,  kK,K,  K
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(iv) The predictions are correct:

iK,K,  IK, 

0 if 1
  rK,   1  

AkfK,lfK,1 if 1
  rK,   1  

 0,AkfK,lfK,1 if 1
  rK,   1  

(c) If  is constant and if 1
  R  the economy could achieve a positive steady state.

The steady state capital euler equation in this case is:

1


 A l
k

1
 1       (3)

The labor euler equation is:

l  1  A k
l


    (4)

Use (3) and (4) to solve for k and l:

l  1  A


A
1  1  


1

k  1  A


A
1  1  

1
1

(d) If k0  k  1
  R  all resources will be invested until 1

  R . On the other hand,
if k0  k  1

  R  the economy will consume part of the available capital until
1
  R . If investment can go negative, the convergence will be potentially slower in the
first case and faster in the second case. See what happens with the competitive
equilibrium.

(e) Consider again the case of a constant  and 1
  R . Now consider all the

equations that characterize the planner’s solution:

Capital euler equation : 1


 Akt11xt1lt11  1  

Labor euler equation : lt  1  Aktxtlt  1  
Resource constraint : ct  kt1  Aktxtlt1  1  kt

Lets conjecture that along the BGP all variables grow at the same and constant rate g.
Now lets check if the above three equations satisfy this BGP. Using yt  gty for each
variable y we get:
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1


 Ak 1l1g11  1 t1  1  

l  1  Ak lg1   t  1  
c  gk  Ak l1g11  1 t  1  k

The same growth rate makes all equations stationary. The growth rate is g  1  .
Therefore, in the steady state growth path that we conjectured we have:

1


 Ak 1l1  1  

l  1  Ak l  1  
c  1  k  Ak l1  1  k

You can solve for k,c, l.

Remember from Hansen’s lecture that CRRA utility functions are consistent with BGP.
Are linear preferences a special case of CRRA?

SPRING 2003 - QUESTION 2
(a)

Bellman equation:

vk  max
k

Ak  k 1

1    vk 

A sequence-of-markets equilibrium for this economy is an allocation ct,ktt0
 and a

sequence of prices rtt0
 such that

(i) Given prices, consumers solve:

max
ctt0

t0



t ct
1

1  

s. t. ct  kt1  rtkt, t
k0 is given

(i) Given prices, firms solve:

max
kt
f
Aktf  rtktf , t

(iii) Markets clear:

kt  ktf,t
ct  kt1  Akt,t
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A balanced growth path (BGP) for this economy is a growth rate g such that in the
long run all variables grow at this constant rate:

kt1
kt

 g

ct1
ct  g
yt1
yt  g

To get g, use the above Bellman equation, compute FOC and EC, and combine them
in order to get the following Euler equation:

Akt  kt1  AAkt1  kt2

Rearranging terms gives:

ct1
ct  Akt1  kt2

Akt  kt1
 A

1
     (1)

Therefore, along the long-run balanced growth path we have:

g  A
1


For g to be a BGP growth rate we require A  1.

To study whether the BGP is reached instantaneously, consider (1) again:

Akt1  kt2
Akt  kt1

 A
1


Divide numerator and denominator of the left-hand side by kt and obtain:

A kt1
kt
 kt2

kt
kt1
kt1

A kt
kt
 kt1

kt

 A
1


Given that in the short-run (or at date t  0), before reaching the BGP, the economy
can potentially grow at a rate that is not constant implies:

Agt  gt1gt
A  gt

 A
1


where gt  kt1/kt is not constant in principle but could vary over time. Rearranging the
above equation we get:

gt1  A  A
1
 A
gt  1     (2)

It is easy to check that (2) is strictly concave and converges to two possible steady
states, A and A

1
 , depending on the initial condition. As the next figure shows, A is
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a stable steady state and A
1
 is unstable. Additionally, it is easy to check that A

does not satisfy the TVC, hence we can rule it out. Therefore, in the long-run the
economy must be growing at the rate A

1
 as suggested above. Since this steady

state growth rate is unstable, the economy has to reach it instantaneously, otherwise
there would be no BGP in the long-run (the economy would diverge).

045

tg

1+tg
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( ) σβ /1A A

(b)

In order to write down the Bellman equation realize that c  Ak  k  and c1  Ak1  k.
There will be two state variables k and k1:

vk1,k  max
k

Ak  k1  k   k1

1    vk,k 

Combining FOC and ECs gives the following Euler equation:

1
ct  ct1


A  

ct1  ct
 2A
ct2  ct1

    (3)

Multiply both sides of (3) by ct1  ct to get:

ct1  ct
ct  ct1



 A    2A ct1  ct
ct2  ct1



    (4)

Use the fact that ct1
ct  gt and rewrite (4) as follows:

gtct  ct
ct   ct

gt1



 A    2A gtct  ct
gtgt1ct  gtct



This simplifies to
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gt1
gt  
gt1  



 A    2A 1
gt

gt  
gt1  



    (5)

Along the BGP we have gt1  gt  gt1  g,t. Hence, (5) becomes:

g  A    2A
g     (6)

Define ĝ  g and rewrite (6) as follows:

ĝ2  A  ĝ  A2  0

Solving for ĝ we obtain:

ĝ 
ĝH  A
ĝL  

Hence,

g 
gH  A

1


gL  
1


    (7)

Note that gL cannot be a BGP growth rate because gL  1, which implies that the
stock of capital goes to zero as t  . Therefore, we can rule gL out. Like before we
require A  1 so that gH  1.

My guess is that the economy does not have to reach the BGP immediately because
of the habit formation preferences. What do you think?

FALL 2003 - QUESTION 1
The Solow growth model without technological progress and population growth is
described by the following equations (all variables in per capita terms):

Production function : yt  fkt
Savings function : st  syt  sfkt

Law of motion of capital : kt1  1  kt  it
Resource constraint : yt  ct  it

where f.  satisfies the Inada conditions, and s  0,1 is the exogenous savings rate.

In equilibrium we have

st  it  sfkt

Using this conditions and the law of motion of capital we get:
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kt1  kt  kt  sfkt  kt

In steady state kt  0 and savings are just enough to recoup the capital that wears
out every period:

sfk  k

The following graph illustrates the long-run equilibrium, which is stable:

tkδ

)( tksf

)(, tt ksfkδ

tkk

)( tkf

c

i

(a) In the Solow growth model with subsistence consumption, the savings function
changes as follows:

st 
sy  y if y  y

0 if y  y

Now, the capital accumulation is given by:

kt 
sfkt  sy  kt if y  y

kt if y  y

There are several steady state candidates, depending on k,y and . The next figure
illustrates some of the candidates.
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If k is low enough, there could be multiple positive steady states, unique positive
steady state, or no positive steady state at all. For example, if the depreciation rate is
very high 0, the only possible steady state is k  0 (stable). In this case, the
economy is unable to save enough to keep up the stock of capital and goes to a sort
of "poverty trap" in the long-run. If the depreciation rate is not very high 1, there
could be a unique steady state k , which is stable from above and unstable from
below. Finally, if the depreciation rate is very small 2, there could be multiple steady
states. In particular the economy could be in a low steady state k , which is unstable,
or in a high steady state k , which is stable.

If k is very high, there could be no depreciation rate low enough such that the
economy reaches a positive steady state.

(b) Economies that start with a very low per capita capital may not sustain savings and
investment in face of the required subsistence consumption. For example, if
k   k0  k , the economy will converge to k  in the long run (this is a sort of poverty
trap with positive stock of capital). It is also possible that the economy starts with an
even lower stock of capital, say k0  k . In this case, the only feasible stock of capital
in the long run is zero.

FALL 2003 - QUESTION 2
(a) Draw the production function
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(b) Sequence-of-markets equilibrium

A sequence-of-markets equilibrium for this economy is an allocation ct,ktt0
 and

price rtt0
 such that

(i) Given prices, consumers solve:

max
ctt0

t0



tct

such that
ct  kt1  rtkt, t

k0 is given

(i) Given prices, firms solve:

max
Bktf  rtktf if ktf  k f

Akt  k f  Bk f  rtktf if ktf  k f

Note that the marginal product of capital decreases as the production function
changes:

rt 
B if ktf  k f

A  B if ktf  k f

(iii) Markets clear:

ktf  kt,t
ct  kt1  yt,t
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(c) Bellman equation:

vk 
maxkBk  k   vk  if k  k

maxkAk  k  Bk  k   vk  if k  k

(d) The steady state capital is kss  0. To see why, first compute the marginal rate of
substitution (MRS) between ct and ct1 and compare with the marginal return or
marginal product (MP) of capital:

MRSct,ct1  1


 B if kt  k

 A if kt  k

Now consider the only two possible scenarios:

(1) 0  k0  k  MRS  MP  the consumer prefers to consume zero in each period
and accumulate capital until kt  k. When the economy reaches k we have MRS  MP
so the consumer prefers to consume all accumulated capital and invest zero from that
period on.

(2) k0  k  MRS  MP  the consumer prefers to consume all accumulated capital in
the first period and invest zero afterward.

Therefore, the consumer eats the stock of capital either in the future or today. In both
cases, the stock of capital is zero in the long run.

(e) Optimal law of motion

kt1 
Bkt if kt  k

0 if kt  k

(e) Value function. Assuming the economy reaches k in finite time (say T periods), if it
starts with 0  k0  k:

vk0 
BT1Bk0 if k0  k

Bk0 if k0  k

FALL 2003 - QUESTION 4
(a) First, we need to detrend all variables. Conjecture that all variables grow at the
same rate along the balanced growth path, say xt  x tgt, where x t denotes the
detrended variables. Start with the resource constraint:

gtĉ t  gt1K t1  zt1   t1 K tgt
Nt1  1  K tgt

Rearranging terms gives:
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ĉ t  gK t1  zt
1  1

g1
t

K tNt1  1  K t

The problem is stationary if g  1  . In this case,

ĉ t  1  K t1  ztK tNt1  1  K t

Now, adjust the lifetime utility:

maxE0
t0



tlogĉ t1   t  vnt

 maxE0
t0



tlogĉ t  vnt 
t0



tt log1  

 maxE0
t0



tlogĉ t  vnt 
 log1  
1  2

 maxE0
t0



tlogĉ t  vnt  constant

From now on we can ignore the constant above. Additionally, and without loss of
generality, suppose the population have a constant unity mass, which implies
n  N,t.

The Bellman equation for the planner’s problem is:

Vz,K   max
K ,n

logĉ  vn  E V z,K 

 max
K ,n

log zK n1  1  K  1  K   vn  E V z,K 

s .t. log z  
2

2   log z  

The FOCs are:

K  : 1  ĉ  E V2 z,K 

n : 1  zK
 n

ĉ  v n

The envelope condition is:

V2z,K   zK 1n1  1  
ĉ

Substituting the EC into the first FOC and rearranging terms gives:
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1  
ĉ  E zK 1n1  1  

ĉ 

v n  1  zK n
ĉ

These are necessary and sufficient conditions for a maximum because the opportunity
set is convex and the objective function is concave in both arguments. Note that v.  is
convex, hence v.  is concave.

The planner’s problem can be decentralized as a competitive equilibrium because the
problem satisfies the conditions required by the Second Welfare Theorem: convexity
of opportunity set, concavity of objective function, and no distortions of any sort.

(b) Time series for zt:

10987654321

1

0.975

0.95

0.925

0.9

0.875

0.85

0.825

0.8

0.775

0.75

x

y

x
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To gain intuition, I will assume for while that vn is linear (remember that a linear
function is still convex) and that   1. In this case, we are able to obtain closed form
solutions for the policy functions. Remember from Hansen’s HW 4, Q3, that

nt  n

K t1  Ît 


1   ztK tn 1

ct  1  
1   ztK tn 1

Yt  ztK tn 1

Taking logs gives:
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lognt  logn

log Ît  log


1    log zt   logK t  1   logn

logĉ t  log 1  
1    log zt   logK t  1   logn

Ŷt  log zt   logK t  1   logn

It is straightforward to see from that in this case all variables, except labor, there is
positive relationship between the technology shock and all variables, except labor. In
another words, these variables are procyclical. Moreover, the size of the change is
one-to-one. Now, lets go back to the general model. The stochastic system of
equations is given by:

1    Et ĉ t
ĉ t1

 Ŷt1
K t1

 1  

v ntnt 
1  ztK t

ĉ t
ĉ t  Ît  Ŷt

Ît  1  K t1  1  K t
Ŷt  ztK tn t1

In the general model, investment becomes less volatile than in the example above
because of the undepreciated part of the capital, that is, investment no longer fully
adjusts to current shocks as it used to do in the example above. Additionally, labor will
no longer be constant but will change with the technology shock. In fact, labor has to
fall because the marginal product of labor falls with the shock. My guess is that (1)
output will fall more than labor, and that (2) consumption will fall more than
investment. To see the first claim, take the log of the FOC for labor:

logv nt   lognt  log1    log z t   logK t  logĉ t

In period t, the stock of capital is given (it was chosen in the previous period). Hence,
a fall in zt will reduce the left-hand side of the above equation in the proportion of
one-to-one. However, consumption is also falling, acting to counterbalance the fall in
zt. The effect of consumption is equivalent to a negative income effect on the labor
supply, meaning that workers will try to work a little bit more to compensate for the
income loss. Anyway, we know that overall labor has to fall because a decrease in zt
reduces the marginal productivity of labor, which discourages labor demand. How
much labor falls depend on the shape of the function vnt. Output falls more than
labor because zt and nt are falling at the same time. To see this clearly just take the
log of the production function and remember that the current stock of capital is given:
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logŶt  log zt   logK t  1   lognt

Try to show claim (2), using the euler equation:

1  
ĉ t

 Et R t1
ĉ t1

where R t1  Ŷt1/K t1  1   is tomorrow’s return on capital.

(c) I think there is a typo in the question, vn should be written without the negative
sign because there is already a negative sign in the objective function. Anyway,
remember that a linear vn corresponds to the indivisible labor model, which delivers
large variations in the labor supply. Therefore, my guess is that linear preferences
overs leisure implies more volatility of the labor supply. One way to see this is to
consider the log of the FOC for labor again:

vnt  nt :

log   lognt  log1    log z t   logK t  logĉ t
lognt  1

 log z t  ...

vnt  nt3 :

log3nt2   lognt  log1    log z t   logK t  logĉ t

lognt  1
2   log z t  ...

Therefore, the effect of a decrease in z is smaller in the second case, ceteris paribus.

(d) This is abnormal. In fact, the pattern displayed by z in the previous figure does no
reflect variations along a normal business cycles. It resembles more a depression (I
guess this is Lee Ohanian’s question, meaning that the numbers for z are actual
numbers computed for the US Great Depression). In order to investigate this
phenomenon I would try to see what was going on in the main markets: labor market,
and capital markets. Cole and Ohanian argue that the cartelization of the labor market
by Roosevelt’s policies kept wages artificially high and contributed to the persistence
of the Great Depression. Others, including Irving Fisher (1933), argue that the problem
was in the financial system (half of the banks failed during the depression, and
financial intermediation collapsed). Others argue that the problem was a wrong
monetary policy (too tight money supply, which reduced liquidity). Anyway, the
persistence of the Great Depression was probably caused by some big distortion
(which nobody fully understands yet) either in the labor market, or in the capital
markets, or both.

SPRING 2004 - QUESTION 2
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(a)

Bellman equation for the Planner’s problem:

vk  max
k,n

logkn1  k   n  vk 

A sequence-of-markets equilibrium for this economy is an allocation ct,kt,ntt0
 and

prices wt, rtt0
 such that

(i) Given prices, consumers solve:

max
ct,ntt0


t0



tlogct  nt 

such that
ct  kt1  wtnt  rtkt, t

k0 is given

(i) Given prices, firms solve:

max
Kt,Nt

KtNt1  wtNt  rtKt, t

Note: I’m using capital letters to denote firms’ choice variables.

(iii) Markets clear:

nt  Nt,t
kt  Kt,t

ct  kt1  ktnt1,t

To find the steady state, use the Bellman equation, take FOC, envelope condition, and
find the euler equations:

FOC k  : 1
kn1  k 

 v k 

FOC n : 1  k
n

kn1  k 
 1

EC k : vk   k1n1
kn1  k 

    (1)

    (2)

    (3)

Note: the maximization problem is well defined and there is no corner solution
because n  0,1 by assumption.

Two equations describe the planner’s solution, the capital euler equation (combining 1
and 2) and the labor euler equation (2), respectively:
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1
kn1  k 

  k 1n1
k n1  k 

1  kn
kn1  k 

 1

In steady state we have:

1  k 1n 1

1  k n   k n 1  k

Solving the first equation we get:

k  
1
1 n

Substituting this into the second equation gives:

1  

1  


1 n  

1
1 n

Solving for n :

n  1  
1  

Substituting this into the equation for k gives:

k  
1
1 1  

1  

(b) Bellman equation for the Planner’s problem:

vk,e  max
k,n

log ken1  k   n  vk ,e 

s.t. e   1  e  n2

If you solve this problem (for example, using value function iteration), you will find the
following laws of motion for labor, capital, and consumption:

nt  1  
1  

kt1  ktetnt1

ct  1  ktetnt1

This allocation will be the same across all people.

In the case of indivisible labor, nt  0,1, this is still longer true because the the
coefficient of risk aversion is   1.

Let t be the probability of working full time, that is, t  Prnt  1. Let c1t be the
consumption when working full time, and let c2t be the consumption when
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unemployed. Expected utility of an individual consumer becomes:

uc1t,c2t,t  tlogc1t  1  1  tlogc2t  0
 t logc1t  1  t logc2t  t

Remember from Hansen’s Problem Set 4 that by introducing lotteries we "convexify"
the problem and make decentralization possible. The (decentralized) problem of a
consumer is:

max
t0



tt logc1t  1  t logc2t  t 

such that

tc1t  1  tc2t  kt1  rtkt  wttet1  1  tet0  rtkt  wttet
et1  1  et  t2

If you set up the Lagrangean problem (or the Bellman equation for the consumer) and
take FOC with respect to c1t and c2t you will conclude that:

c1t  c2t  ct

Therefore, regardless the individual state (employed, unemployed), each consumer
will consume the same amount, as in the previous problem. This is because
preferences are separable in consumption and leisure (and also because the labor
parameter in the utility function is normalized to one). For a more general class of
utility functions, for example, 1

1 ct
1  nt1  1 for some   0,1, this result no

longer holds, since in this case agents would consume more when employed. As for
the labor supply, not the same people will be working in every period: they work with
probability t and don’t work with probability 1  t, although they still can have a flat
consumption as I said before.
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